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Lesson	1.1:	The	Prisoner’s	Dilemma	and	Strict
Dominance

At	its	core,	game	theory	is	the	study	of	strategic	interdependence—that	is,
situations	where	my	actions	affect	both	my	welfare	and	your	welfare	and	vice
versa.	Strategic	interdependence	is	tricky,	as	actors	need	to	anticipate,	act,	and
react.	Blissful	ignorance	will	not	cut	it.

The	prisoner’s	dilemma	is	the	oldest	and	most	studied	model	in	game	theory,
and	its	solution	concept	is	also	the	simplest.	As	such,	we	will	start	with	it.	Two
thieves	plan	to	rob	an	electronics	store.	As	they	approach	the	backdoor,	the
police	arrest	them	for	trespassing.	The	cops	suspect	that	the	pair	planned	to
break	in	but	lack	the	evidence	to	support	such	an	accusation.	They	therefore
require	a	confession	to	charge	the	suspects	with	the	greater	crime.

Having	studied	game	theory	in	college,	the	interrogator	throws	them	into	the
prisoner’s	dilemma.	He	individually	sequesters	both	robbers	and	tells	each	of
them	the	following:

We	are	currently	charging	you	with	trespassing,	which	implies	a	one	month
jail	sentence.	I	know	you	were	planning	on	robbing	the	store,	but	right	now	I
cannot	prove	it—I	need	your	testimony.	In	exchange	for	your	cooperation,	I	will
dismiss	your	trespassing	charge,	and	your	partner	will	be	charged	to	the	fullest
extent	of	the	law:	a	twelve	month	jail	sentence.

I	am	offering	your	partner	the	same	deal.	If	both	of	you	confess,	your
individual	testimony	is	no	longer	as	valuable,	and	your	jail	sentence	will	be
eight	months	each.

If	both	criminals	are	self-interested	and	only	care	about	minimizing	their	jail
time,	should	they	take	the	interrogator’s	deal?

	



1.1.1:	Solving	the	Prisoner’s	Dilemma
The	story	contains	a	lot	of	information.	Luckily,	we	can	condense	everything

we	need	to	know	into	a	simple	matrix:

We	will	use	this	type	of	game	matrix	regularly,	so	it	is	important	to
understand	how	to	interpret	it.	There	are	two	players	in	this	game.	The	first
player’s	strategies	(keep	“quiet”	and	“confess”)	are	in	the	rows,	and	the	second
player’s	strategies	are	in	the	columns.	The	first	player’s	payoffs	are	listed	first
for	each	outcome,	and	the	second	player’s	are	listed	second.	For	example,	if	the
first	player	keeps	quiet	and	the	second	player	confesses,	then	the	game	ends	in
the	top	right	set	of	payoffs;	the	first	player	receives	twelve	months	of	jail	time
and	the	second	player	receives	zero.	Finally,	as	a	matter	of	convention,	we	refer
to	the	first	player	as	a	man	and	the	second	player	as	a	woman;	this	will	allow	us
to	utilize	pronouns	like	“he”	and	“she”	instead	of	endlessly	repeating	“player	1”
and	“player	2.”

Which	strategy	should	each	player	choose?	To	see	the	answer,	we	must	look
at	each	move	in	isolation.	Consider	the	game	from	player	1’s	perspective.
Suppose	he	knew	player	2	will	keep	quiet.	How	should	he	respond?

Let’s	focus	on	the	important	information	in	that	context.	Since	player	1	only
cares	about	his	time	in	jail,	we	can	block	out	player	2’s	payoffs	with	question
marks:

Player	1	should	confess.	If	he	keeps	quiet,	he	will	spend	one	month	in	jail.
But	if	he	confesses,	he	walks	away.	Since	he	prefers	less	jail	time	to	more	jail
time,	confession	produces	his	best	outcome.

Note	that	player	2’s	payoffs	are	completely	irrelevant	to	player	1’s	decision
in	this	context—if	he	knows	that	she	will	keep	quiet,	then	he	only	needs	to	look
at	his	own	payoffs	to	decide	which	strategy	to	pick.	Thus,	the	question	marks
could	be	any	number	at	all,	and	player	1’s	optimal	decision	given	player	2’s
move	will	remain	the	same.

On	the	other	hand,	suppose	player	1	knew	that	player	2	will	confess.	What
should	he	do?	Again,	the	answer	is	easier	to	see	if	we	only	look	at	the	relevant
information:



Confession	wins	a	second	time:	confessing	leads	to	eight	months	of	jail	time,
whereas	silence	buys	twelve.	So	player	1	would	want	to	confess	if	player	2
confesses.

Putting	these	two	pieces	of	information	together,	we	reach	an	important
conclusion—player	1	is	better	off	confessing	regardless	of	player	2’s	strategy!
Thus,	player	1	can	effectively	ignore	whatever	he	thinks	player	2	will	do,	since
confessing	gives	him	less	jail	time	in	either	scenario.

Let’s	switch	over	to	player	2’s	perspective.	Suppose	she	knew	that	player	1
will	keep	quiet,	even	though	we	realize	he	should	not.	Here	is	her	situation:

As	before,	player	2	should	confess,	as	she	will	shave	a	month	off	her	jail
sentence	if	she	does	so.

Finally,	suppose	she	knew	player	1	will	confess.	How	should	she	respond?

Unsurprisingly,	she	should	confess	and	spend	four	fewer	months	in	jail.
Once	more,	player	2	prefers	confessing	regardless	of	what	player	1	does.

Thus,	we	have	reached	a	solution:	both	players	confess,	and	both	players	spend
eight	months	in	jail.	The	justice	system	has	triumphed,	thanks	to	the
interrogator’s	savviness.

This	outcome	perplexes	a	lot	of	people	new	to	the	field	of	game	theory.
Compare	the	<quiet,	quiet>	outcome	to	the	<confess,	confess>	outcome:

Looking	at	the	game	matrix,	people	see	that	the	<quiet,	quiet>	outcome
leaves	both	players	better	off	than	the	<confess,	confess>	outcome.	They	then
wonder	why	the	players	cannot	coordinate	on	keeping	quiet.	But	as	we	just	saw,
promises	to	remain	silent	are	unsustainable.	Player	1	wants	player	2	to	keep
quiet	so	when	he	confesses	he	walks	away	free.	The	same	goes	for	player	2.	As	a
result,	the	<quiet,	quiet>	outcome	is	inherently	unstable.	Ultimately,	the	players



finish	in	the	inferior	(but	sustainable)	<confess,	confess>	outcome.
	



1.1.2:	The	Meaning	of	the	Numbers	and	the	Role	of	Game	Theory
Although	a	large	branch	of	game	theory	is	devoted	to	the	study	of	expected

utility,	we	generally	consider	each	player’s	payoffs	as	a	ranking	of	his	most
preferred	outcome	to	his	least	preferred	outcome.	In	the	prisoner’s	dilemma,	we
assumed	that	players	only	wanted	to	minimize	their	jail	time.	Game	theory	does
not	force	players	to	have	these	preferences,	as	critics	frequently	claim.	Instead,
game	theory	analyzes	what	should	happen	given	what	players	desire.	So	if
players	only	want	to	minimize	jail	time,	we	could	use	the	negative	number	of
months	spent	in	jail	as	their	payoffs.	This	preserves	their	individual	orderings
over	outcomes,	as	the	most	preferred	outcome	is	worth	0,	the	least	preferred
outcome	is	-12,	and	everything	else	logically	follows	in	between.

Interestingly,	the	cardinal	values	of	the	numbers	are	irrelevant	to	the
outcome	of	the	prisoner’s	dilemma.	For	example,	suppose	we	changed	the

payoff	matrix	to	this:	
Here,	we	have	replaced	the	months	of	jail	time	with	an	ordering	of	most	to

least	preferred	outcomes,	with	4	representing	a	player’s	most	preferred	outcome
and	1	representing	a	player’s	least	preferred	outcome.	In	other	words,	player	1
would	most	like	to	reach	the	<confess,	quiet>	outcome,	then	the	<quiet,	quiet>
outcome,	then	the	<confess,	confess>	outcome,	then	the	<quiet,	confess>
outcome.

Even	with	these	changes,	confess	is	still	always	better	than	keep	quiet.	To

see	this,	suppose	player	2	kept	quiet:	
Player	1	should	confess,	since	4	beats	3.

Likewise,	suppose	player	2	confessed:	
Then	player	1	should	still	confess,	as	2	beats	1.
The	same	is	true	for	player	2.	First,	suppose	player	1	kept	quiet:	



Player	2	ought	to	confess,	since	4	beats	3.

Alternatively,	if	player	1	confessed:	
Player	2	should	confess	as	well,	as	2	is	greater	than	1.	Thus,	regardless	of

what	the	other	player	does,	each	player’s	best	strategy	is	to	confess.
To	be	clear,	this	preference	ordering	exclusively	over	time	spent	in	jail	is

just	one	way	the	players	may	interpret	the	situation.	Suppose	you	and	a	friend
were	actually	arrested	and	the	interrogator	offered	you	a	similar	deal.	The	results
here	do	not	generally	tell	you	what	to	do	in	that	situation,	unless	you	and	your
friend	only	cared	about	jail	time.	Perhaps	your	friendship	is	strong,	and	both	of
you	value	it	more	than	avoiding	jail	time.	Since	confessing	might	destroy	the
friendship,	you	could	prefer	to	keep	quiet	if	your	partner	kept	quiet,	which
changes	the	ranking	of	your	outcomes.	Your	preferences	here	are	perfectly
rational.	However,	we	do	not	yet	have	the	tools	to	solve	the	corresponding	game.
We	will	reconsider	these	alternative	sets	of	preferences	in	Lesson	1.3.

Indeed,	the	possibility	of	alternative	preferences	highlights	game	theory’s
role	in	making	predictions	about	the	world.	In	general,	we	take	a	three	step
approach:	1)	Make	assumptions.

2)	Do	some	math.
3)	Draw	conclusions.
	
We	do	steps	1	and	3	everyday.	However,	absent	rigorous	logic,	some

conclusions	we	draw	may	not	actually	follow	from	our	assumptions.	Game
theory—the	math	from	step	2	that	this	book	covers—provides	a	rigorous	way	of
ensuring	that	that	our	conclusions	follow	directly	from	the	assumptions.	Thus,
correct	assumptions	imply	correct	conclusions.	But	incorrect	assumptions	could
lead	to	ridiculous	claims.	As	such,	we	must	be	careful	(and	precise!)	about	the
assumptions	we	make,	and	we	should	not	be	surprised	if	our	conclusions	change
based	on	the	assumptions	we	make.

Nevertheless,	for	the	given	payoffs	in	the	prisoner’s	dilemma,	we	have	seen
an	example	of	strict	dominance.	We	say	that	a	strategy	x	strictly	dominates
strategy	y	for	a	player	if	strategy	x	provides	a	greater	payoff	for	that	player	than
strategy	y	regardless	of	what	the	other	players	do.	In	this	example,	confessing
strictly	dominated	keeping	quiet	for	both	players.	Unsurprisingly,	players	never
optimally	select	strictly	dominated	strategies—by	definition,	a	better	option
always	exists	regardless	of	what	the	other	players	do.
	



1.1.3:	Applications	of	the	Prisoner’s	Dilemma
The	prisoner’s	dilemma	has	a	number	of	applications.	Let’s	use	the	game	to

explore	optimal	strategies	in	a	number	of	different	contexts.
First,	consider	two	states	considering	whether	to	go	to	war.	The	military

technology	available	to	these	countries	gives	the	side	that	strikes	first	a	large
advantage	in	the	fighting.	In	fact,	the	first-strike	benefit	is	so	great	that	each
country	would	prefer	attacking	the	other	state	even	if	its	rival	plays	a	peaceful
strategy.	However,	because	war	destroys	property	and	kills	people,	both	prefer
remaining	at	peace	to	simultaneously	declaring	war.

Using	these	preferences,	we	can	draw	up	the	following	matrix:

From	this,	we	can	see	that	the	states	most	prefer	attacking	while	the	other
one	plays	defensively.	(This	is	due	to	the	first-strike	advantage.)	Their	next	best
outcome	is	to	maintain	the	peace	through	mutual	defensive	strategies.	After	that,
they	prefer	declaring	war	simultaneously.	Each	state’s	worst	outcome	is	to
choose	defense	while	the	other	side	acts	as	the	aggressor.

We	do	not	need	to	solve	this	game—we	already	have!	This	is	the	same	game
from	the	previous	section,	except	we	have	exchanged	the	labels	“quiet”	with
“defend”	and	“confess”	with	“attack.”		Thus,	we	know	that	both	states	attack	in
this	situation	even	though	they	both	prefer	the	<defend,	defend>	outcome.	The
first-strike	advantages	trap	the	states	in	a	prisoner’s	dilemma	that	leads	to	war.

A	similar	problem	exists	with	arms	races.	Imagine	states	must
simultaneously	choose	whether	to	develop	a	new	military	technology.
Constructing	weapons	is	expensive	but	provides	greater	security	against	rival
states.	We	can	draw	up	another	matrix	for	this	scenario:

Here,	the	states	most	prefer	building	while	the	other	state	passes.	Following
that,	they	prefer	the	<pass,	pass>	outcome	to	the	<build,	build>	outcome;	the
states	maintain	the	same	relative	military	strength	in	both	these	outcomes,	but
they	do	not	waste	money	on	weaponry	if	they	both	pass.	The	worst	possible
outcome	is	for	the	other	side	to	build	while	the	original	side	passes.	Again,	we
already	know	the	solution	to	this	game.	Both	sides	engage	in	the	arms	race	and
build.



Now	consider	international	trade.	Many	countries	place	tariffs	(a	tax)	on
imported	goods	to	protect	domestic	industries	even	though	this	leads	to	higher
prices	overall.

We	can	use	the	prisoner’s	dilemma	to	explain	this	phenomenon.	A	country
can	levy	a	tariff	against	another	country’s	goods	or	opt	for	no	taxes.	The	best
outcome	for	a	country	is	to	tax	imports	while	not	having	the	other	country	tax	its
exports.	This	allows	the	domestic	industries	to	have	an	advantage	at	home	and
be	competitive	abroad,	and	the	country	also	earns	revenue	from	the	tax	itself.
Free	trade	is	the	next	best	outcome,	as	it	allows	the	lowest	prices	for	each
country’s	consumers.	Mutual	tariffs	is	the	next	best	outcome,	as	they	give	each
country	an	advantage	at	home	but	a	disadvantage	abroad;	ultimately,	this	leads
to	higher	prices	than	the	free	trade	outcome.	The	worst	possible	outcome	is	to
levy	no	taxes	while	the	other	country	enforces	a	tariff,	as	domestic	industries
stand	no	chance	against	foreign	rivals.

Let’s	toss	that	information	into	another	matrix:

We	know	this	is	a	prisoner’s	dilemma	and	both	sides	will	tariff	each	other’s
goods:	taxing	strictly	dominates	not	taxing	in	this	setup.

Finally,	consider	two	rival	firms	considering	whether	to	advertise	their
products.	Would	the	firms	ever	want	the	government	to	pass	a	law	forbidding
advertisement?	Surprisingly,	if	advertising	campaigns	only	persuade	a	consumer
to	buy	a	certain	brand	of	product	rather	than	the	product	in	general,	the	answer	is
yes.	If	one	side	places	ads	and	the	other	does	not,	the	firm	with	the	advertising
campaign	cuts	into	the	other’s	share	of	the	market.	If	they	both	advertise,	the	ads
cancel	each	other	out,	but	they	still	have	to	pay	for	the	campaigns.

If	we	look	at	the	corresponding	matrix,	we	see	another	classic	example	of
the	prisoner’s	dilemma:

Thus,	both	sides	advertise	to	preempt	the	other	side’s	campaign.	The	ads
ultimately	cancel	each	other	out,	and	the	firms	end	the	game	in	a	worse	position
than	had	they	both	not	placed	ads.

The	Public	Health	Cigarette	Smoking	Act	is	a	noteworthy	application	of	the
advertising	game.	In	1970,	Richard	Nixon	signed	the	law,	which	removed



cigarette	ads	from	television.	Tobacco	companies	actually	benefited	from	this
law	in	a	perverse	way—the	law	forced	them	to	cooperating	with	each	other.	In
terms	of	the	game	matrix,	the	law	pushed	them	from	the	<2,	2>	payoff	to	the
mutually	preferable	<3,	3>	payoff.	The	law	simultaneously	satisfied	politicians,
as	it	made	targeting	children	more	difficult	for	all	tobacco	companies.

These	examples	illustrate	game	theory’s	ability	to	draw	parallels	between
seemingly	dissimilar	situations.	We	have	seen	models	of	prisoner	confession,
wars,	arms	races,	taxation,	and	advertisements.	Despite	the	range	of	examples,
each	had	an	underlying	prisoner’s	dilemma	mechanism.	In	this	manner,	game
theory	allows	us	to	unify	a	wide-range	of	life	decisions	under	a	single,	unified
framework.
	



1.1.4:	Deadlock
The	2012	Summer	Olympics	badminton	tournament	provides	an	interesting

case	study	of	strategic	manipulation.	The	tournament	featured	round-robin	group
play	with	a	cut	to	a	single-elimination	quarterfinals	bracket.	Officials	determined
the	seeding	for	the	quarterfinals	by	the	win/loss	records	during	the	round-robin
matches.

In	the	morning	matches	of	the	final	day	of	round-robin	play,	the	second-best
team	in	the	world	lost.	While	their	previous	victories	still	ensured	that	the	team
would	reach	the	quarterfinals,	their	defeat	pushed	them	into	the	lower	half	of	the
seeding.	This	had	an	interesting	impact	on	the	afternoon	matches.	Teams	who
had	already	clinched	a	quarterfinal	spot	now	had	incentive	to	lose	their
remaining	games.	After	all,	a	higher	seeding	meant	a	greater	likelihood	of	facing
the	world’s	second-best	team	earlier	in	the	elimination	rounds.	Matches	turned
into	contests	to	see	who	could	lose	most	efficiently!

To	untangle	the	twisted	logic	at	work	here,	consider	the	following	game.
Two	players	have	to	choose	whether	to	try	or	fail.	The	quality	of	any
corresponding	outcome	is	diagrammed	in	the	game	matrix	below:	

Ordinarily,	we	would	expect	trying	to	be	a	good	thing	and	failing	to	be	a	bad
thing.	The	reverse	is	true	here.	Each	team	most	prefers	failing	while	the	other
team	tries;	this	ensures	the	team	in	question	will	lose,	drop	into	the	lower	part	of
the	quarterfinals	bracket,	and	thus	avoid	the	world’s	second	best	team.	The	worst
outcome	for	a	team	is	for	that	team	to	try	while	the	other	team	fails;	this	ensures
that	the	original	team	wins	the	match	but	then	must	face	a	harder	path	through
the	single	elimination	bracket.	If	both	try	or	both	fail,	then	neither	has	an
inherent	strategic	advantage.

Like	the	prisoner’s	dilemma,	we	can	solve	this	game	with	strict	dominance
alone.	Here,	fail	dominates	try	for	both	parties.	We	can	verify	this	using	the
same	process	as	before.	First,	suppose	player	2	chooses	tries:	

If	player	1	tries,	he	earns	0;	if	he	fails,	he	earns	1.	Since	1	beats	0,	he	should
fail	in	this	situation.



Now	consider	player	1’s	response	to	player	2	failing:	
Again,	fail	triumphs:	failing	nets	him	0	while	trying	earns	him	-1.	Because

failing	is	better	than	trying	for	player	1	regardless	of	player	2’s	strategy,	fail
strictly	dominates	try	for	him.

The	same	story	holds	for	player	2.	Consider	her	response	to	player	1	trying:	

If	player	2	tries,	she	earns	0;	if	she	fails,	she	earns	1.	Thus,	she	ought	to	fail
in	this	situation.

Now	suppose	player	1	failed	instead:	
Player	2	still	ought	to	fail:	-1	is	less	than	0.	As	a	result,	fail	strictly

dominates	try	for	her	as	well.	In	turn,	we	should	expect	both	of	them	to	fail.
Despite	the	absurdity	of	the	outcome,	the	perverse	incentives	of	the	tournament
structure	make	intentionally	failing	a	sensible	strategy!

This	badminton	example	is	a	slight	modification	of	a	generic	game	called
deadlock.	It	gets	its	name	because	the	players	cannot	improve	the	quality	of	their
outcomes	unless	the	opponent	chooses	his	or	her	strategy	incorrectly.	Here	are

the	generic	game’s	payoffs:	
Again,	we	can	solve	this	game	using	strict	dominance.	Specifically,	up

strictly	dominates	down	and	left	strictly	dominates	right.	Let’s	verify	this,

starting	with	player	1’s	strategy:	
We	see	that	up	is	better	than	down,	as	3	beats	1.

Repeating	this	for	right,	we	focus	on	the	following:	



Once	more,	up	is	better	than	down,	since	4	beats	2.	So	up	is	a	better	strategy
than	down	regardless	of	what	player	2	does.

Switching	gears,	suppose	player	1	selected	up.	Then	player	2	can	focus	on

the	following	contingency:	
Left	is	better	than	right	in	this	case,	as	3	is	greater	than	1.
Repeating	this	process	a	final	time,	player	2	now	assumes	player	1	will	play

down:	
Left	is	still	better	than	right,	as	4	is	greater	than	2.	Since	left	always	beats

right	regardless	of	what	player	1	does,	left	strictly	dominates	right,	and	therefore
player	2	will	play	left.	Thus,	the	outcome	is	<up,	left>.

Thus,	both	players	are	locked	into	their	strictly	dominant	strategy	and	will
never	achieve	their	best	outcome	unless	the	other	makes	a	mistake.	However,
unlike	in	the	prisoner’s	dilemma,	no	alternative	outcome	exists	that	is
simultaneously	better	for	both	players	than	the	<up,	left>	solution.	As	such,
deadlock	may	be	more	intuitive,	but	it	also	tends	to	be	substantively	less
interesting.

	



1.1.5:	Strict	Dominance	in	Asymmetric	Games
We	can	use	strict	dominance	on	games	even	when	they	are	not	as	symmetric

as	the	prisoner’s	dilemma	or	deadlock.	Consider	this	one:

Unlike	before,	each	player	has	a	distinct	set	of	payoffs.	But	if	we	run
through	the	same	process	as	before,	we	will	see	that	<up,	right>	is	the	only
reasonable	solution.

Let’s	begin	with	player	1’s	choices.	Suppose	player	2	moved	left.	How
should	player	1	respond?

If	he	chooses	up,	he	earns	9;	if	he	picks	down,	he	earns	8.	Since	9	beats	8,
player	1	should	play	up	in	response	to	left.

Now	suppose	player	2	chose	right.	Again,	we	need	to	find	how	player	1
should	optimally	respond:

Up	nets	player	1	a	payoff	of	3,	while	down	earns	him	-1.	Since	3	beats	-1,	up
is	the	better	response	to	right.	Thus,	player	1	should	play	up	regardless	of	player
2’s	strategy.

We	know	player	1’s	optimal	strategy.	All	we	need	to	do	is	repeat	this
process	for	player	2,	and	we	will	be	done.	Let’s	start	with	how	player	2	should
respond	to	up:

If	player	2	chooses	left,	she	earns	-2;	if	she	plays	right,	she	earns	0.	Since	0
is	greater	than	-2,	she	should	pick	right	in	response	to	up.

Let’s	switch	to	player	2’s	response	to	down:



If	player	2	selects	left,	she	earns	5;	if	she	chooses	right,	she	earns	6.	Since	6
beats	5,	she	should	play	right	in	response	to	down.	Thus,	regardless	of	player	1’s
choice,	player	2	should	optimally	select	right.

Therefore,	the	solution	to	this	game	is	<up,	right>.	Player	1	ultimately	earns
3,	while	player	2	earns	0.
	



Conclusion
Overall,	strict	dominance	is	a	powerful	tool	in	game	theory.	But	while	the

concept	is	simple,	applying	it	can	be	difficult.	Even	in	matrix	form,	a	game	still
has	a	lot	of	information.	To	successfully	find	dominated	strategies,	we	must
focus	on	one	player’s	payoffs	at	a	time.	Above,	we	used	question	marks	to
isolate	the	relevant	payoffs.	When	searching	for	strictly	dominated	strategies	on
your	own,	mentally	block	out	the	irrelevant	payoffs	and	strategies	in	a	similar
manner.

	



Takeaway	Points
1)	Game	theory	is	a	mathematical	method	to	ensure	that	assumptions	imply
conclusions.
2)	Payoffs	in	a	game	matrix	represent	a	player’s	preferences	according	to	the
assumptions.
3)	Strategy	x	strictly	dominates	strategy	y	if	it	produces	a	higher	payoff	than
y	regardless	of	what	all	other	players	do.
4)	Playing	a	strictly	dominated	strategy	is	irrational—another	strategy	always
yields	a	better	outcome.



Lesson	1.2:	Iterated	Elimination	of	Strictly
Dominated	Strategies

One	of	game	theory’s	greatest	strengths	is	in	analyzing	how	companies
optimally	act	in	a	world	of	imperfect	competition.	When	the	number	of
companies	in	the	world	is	arbitrarily	large,	a	single	company	cannot	manipulate
the	market	on	its	own.	But	if	only	two	rival	companies	exist,	their	individual
business	decisions	have	a	great	impact	on	the	others.

Let’s	see	this	in	action.	Suppose	a	small	town	has	only	two	dance	clubs,
called	ONE	and	TWO.	Both	are	deciding	whether	to	host	a	salsa	night	or	disco
night	this	Friday.	Club	ONE	has	a	strategic	advantage	over	club	TWO:	ONE	is
located	at	the	center	of	the	town,	while	TWO	is	a	few	miles	away.	Thus,	if	TWO
runs	the	same	theme	as	ONE,	nobody	will	show	up	to	TWO.

There	are	three	types	of	customers.	60	hardcore	salsa	fans	will	only	go	to	a
club	if	salsa	is	being	offered.	20	people	are	hardcore	disco	fans	and	will	only	go
to	a	club	if	disco	is	being	offered.	A	final	20	people	prefer	going	to	a	disco
theme	but	will	attend	a	salsa	night	if	that	is	the	only	option.

If	the	businesses	want	to	maximize	the	number	of	customers	on	Friday,	the
payoff	matrix	looks	like	this:

Note	that	TWO	appears	to	be	in	a	dilemma.	If	it	offers	the	same	theme	as
ONE,	nobody	will	show	up.	Thus,	TWO’s	ultimate	goal	must	be	to	successfully
predict	ONE’s	theme	and	then	adopt	the	alternative.	Consequently,	TWO	has	no
strictly	dominant	strategy.

Should	TWO	be	resigned	to	just	guessing	which	strategy	to	play?	Absolutely
not.	If	TWO	unravels	ONE’s	incentives,	TWO	will	know	exactly	which	theme
to	offer.

To	see	how,	consider	which	strategy	ONE	should	play.	First,	suppose	ONE
anticipates	TWO	will	choose	salsa.	How	should	ONE	respond?

If	ONE	picks	salsa,	it	brings	in	80	customers.	If	it	selects	disco,	it	receives



only	40.	Since	80	is	greater	than	40,	ONE	should	play	salsa	in	response	to	TWO
choosing	salsa.

Now	suppose	ONE	believes	TWO	will	plan	a	disco	night:

Once	again,	salsa	is	better;	salsa	brings	in	60	customers,	whereas	disco
generates	only	40.

Stringing	these	two	pieces	of	information	together,	we	know	salsa	strictly
dominates	disco	for	ONE—regardless	of	TWO’s	selection,	ONE	is	always	better
off	choosing	salsa.	Therefore,	ONE	must	optimally	have	a	salsa	night.

With	that	in	mind,	consider	how	TWO	should	reason.	Putting	itself	into
ONE’s	shoes,	TWO	realizes	that	ONE	will	have	a	salsa	night.	Thus,	TWO’s
strategic	dilemma	boils	down	to	the	following	choice:

If	TWO	also	plans	a	salsa	night,	everyone	attends	ONE	due	to	ONE’s
superior	location,	and	TWO	ends	up	with	no	customers	for	the	evening.
Alternatively,	if	TWO	opts	for	a	disco	night,	all	40	of	the	disco	fans	show	up.
Consequently,	TWO	optimally	plays	disco.	Therefore,	the	only	rational	outcome
of	the	game	is	<salsa,	disco>.

While	the	logic	of	the	club	game	appears	straightforward,	we	can	extend	it	to
more	complex	situations.	Consider	the	following	game,	where	the	numbers
represent	the	dollars	won	(or	lost)	by	each	player	for	the	particular	outcomes:

If	we	suppose	the	players	only	want	to	maximize	the	number	of	dollars	they
win,	this	game	presents	a	new	challenge.	With	the	prisoner’s	dilemma,	we	knew
exactly	what	each	player	would	do—confessing	was	always	better	than
remaining	silent	regardless	of	the	other	player’s	strategy.	In	the	club	game,	ONE
had	a	single	strictly	dominant	strategy,	and	we	could	find	TWO’s	optimal
strategy	based	off	of	that	knowledge.

This	game	is	not	as	simple.	For	example,	player	1	is	in	a	quandary.	Suppose
he	knew	player	2	would	go	left:



Player	1	would	then	want	play	up,	as	the	13	he	earns	is	better	than	the	4	he
earns	for	middle	and	-1	he	earns	for	down.	But	this	is	not	the	case	if	player	2
chose	center:

Now	player	1	ought	to	play	middle,	as	the	3	is	better	than	the	1	for	going	up
and	the	2	for	going	down.

And	to	make	things	more	complicated,	look	what	happens	if	player	1	knew
player	2	would	choose	right:

In	this	case,	player	1	should	go	down	and	earn	8.
So	in	three	different	cases,	player	1	should	do	three	different	things.	How

should	player	1	decide	which	to	choose?
	



1.2.1:	Using	Iterated	Elimination	of	Strictly	Dominated	Strategies
In	the	previous	lesson,	we	discussed	why	players	ought	to	never	play	strictly

dominated	strategies.	If	player	are	intelligent,	they	should	infer	how	others	will
not	act	and	tailor	their	strategies	accordingly.

Let’s	generalize	this	thought	process.	First,	take	another	look	at	the
prisoner’s	dilemma:

Recall	that	confessing	strictly	dominates	keeping	quiet	for	player	1.	That	is,
if	player	2	were	to	keep	quiet,	player	1	would	want	to	confess	(0	is	better	than
-1);	and	if	player	2	were	to	confess,	player	1	would	want	to	confess	(-8	is	better
than	-12).	So	player	1	would	never	keep	quiet.

Now	switch	to	player	2’s	perspective.	She	knows	that	player	1	is	intelligent
enough	to	see	that	confessing	strictly	dominates	keeping	quiet.	Therefore,	she
infers	that	he	will	never	keep	quiet.	Given	that,	for	all	intents	and	purposes,
player	2	can	ignore	keep	quiet	as	a	strategy	for	player	1—he	will	never	play	it.
As	such,	from	her	perspective,	she	can	reduce	the	game	to	the	following:

At	this	point,	player	2	should	confess	and	earn	-8	rather	than	keep	quiet	and
earn	-12.	Note	that	she	never	even	had	to	observe	that	confessing	strictly
dominated	keeping	quiet	for	her	as	well;	instead,	she	merely	reduced	the	game
by	removing	player	1’s	implausible	choice.	And	since	the	only	strategy	that
remaining	for	player	1	is	confess,	player	2	can	condition	her	response	purely
based	off	of	that	information.

This	process	is	known	as	iterated	elimination	of	strictly	dominated	strategies
(IESDS).	We	began	by	noting	that	confessing	strictly	dominated	keeping	quiet
for	player	1,	so	we	erased	keep	quiet	as	a	strategy	for	him.	We	then	pretended
that	the	remaining	game	was	all	that	mattered	and	found	that	confess	strictly
dominated	keep	quiet	for	player	2.

IESDS	takes	some	complicated	games	and	reduces	them	into	simpler	games.
We	can	see	this	in	action	using	the	3x3	game	from	earlier:



Let’s	isolate	player	2’s	choice	between	center	and	right:

Should	player	2	select	play	right?	She	should	not—center	strictly	dominates
right.	To	see	this,	note	that	if	player	1	chooses	up,	then	center	beats	right,	as	4	is
greater	than	3.	Likewise,	if	he	plays	middle,	center’s	3	is	superior	to	right’s	2.
Finally,	if	player	1	plays	down,	center	defeats	right	8	to	-1.	Consequently,
regardless	of	which	strategy	player	1	chooses,	center	is	better	than	right	for
player	2.

Now	look	at	the	game	from	player	1’s	perspective.	He	knows	that	player	2
will	never	play	right,	so	he	only	needs	to	consider	the	following	game:

Consider	player	1’s	decision	between	middle	and	down:

Down	is	no	longer	a	sensible	choice—middle	strictly	dominates	it,	as	4	beats
-1	and	3	beats	2.	Essentially,	down	was	only	useful	as	a	contingency	plan	if
player	2	played	right.	But	since	right	is	not	a	sensible	choice	for	player	2,	she
will	not	play	it.	And	since	player	1	knows	that	she	is	sensible	and	will	not	play
right,	he	has	no	reason	to	play	down.

Let’s	flip	back	to	player	2’s	perspective.	She	knows	that	right	is	a	lousy
choice	for	her.	She	also	knows	player	1	knows	that	she	knows	this.	As	a	result,
player	1	infers	that	down	is	a	lousy	choice	for	him.	Working	through	that	logic,
player	2	knows	he	will	not	play	down,	and	therefore	she	can	reduce	the	original



game	to	the	following:

Center	now	strictly	dominates	left	for	her:

We	see	that	if	player	1	plays	up,	then	center’s	4	beats	left’s	3.	And	likewise,
if	player	1	selects	middle,	center	is	again	better	than	left	because	3	beats	1.	So
player	2	would	never	play	left.

After	working	through	another	level	of	the	he-knows-that-she-knows-that-
he-knows	logic,	player	1	can	conclude	he	is	looking	at	the	following	reduced
game:

Isolating	player	1’s	payoffs	makes	it	clear	that	he	will	play	middle	since	3
beats	1:

Therefore,	we	can	conclude	that	player	1	will	play	middle	and	player	2	will
play	center.
	



1.2.2:	Duopolistic	Competition
When	a	single	firm	controls	all	of	the	production	of	a	single	good,	we	call	it

a	monopoly.	When	exactly	two	competing	firms	control	production	an	identical
good,	we	call	this	economic	environment	a	duopoly.	Each	firm’s	production
affects	the	other’s	ability	to	profit.	Thus,	we	can	treat	these	two	firms	as	players
in	a	game	of	profit	maximizing—a	game	that	IESDS	can	solve.

Suppose	Firm	1	and	Firm	2	must	spend	$1	to	produce	a	unit	of	a	good.
Consumer	demand	determines	the	price	of	the	good;	the	larger	the	quantity
available,	the	lower	price.	Let	P	be	the	consumer’s	market	price	of	the	good	and
Q	be	the	total	quantity	of	units	the	two	firms	produce.	Here,	if	the	firms
collectively	produce	six	or	fewer	units,	the	price	demand	function	is	as	follows:
P	=	$12	–	($2)(Q)

	
If	the	firms	collectively	produce	more	than	six	units,	then	the	market	price	is

$0.
Note	that	the	quantity	produced	is	a	function	of	both	firm’s	strategic

decisions.	A	single	firm	cannot	control	the	other	firm’s	production	quantity,
which	in	turn	means	it	cannot	unilaterally	determine	ultimate	market	price.	As
such,	we	might	wonder	if	the	firms	have	an	optimal	production	strategy.

To	begin,	each	firm	has	only	six	plausible	production	choices:	zero,	one,
two,	three,	four,	or	five.	Producing	six	more	units	is	not	sensible;	each	unit	costs
$1	to	produce,	but	flooding	the	market	with	more	than	five	units	ensures	the
ultimate	price	will	be	less	than	$1,	guaranteeing	a	net	loss.

We	can	use	this	as	a	starting	point	to	construct	the	payoff	matrix.	Since	each
firm	has	six	remaining	strategies,	we	are	looking	at	a	daunting	6x6	game:	

To	see	how	we	could	derive	these	payoffs	ourselves,	let’s	run	through	a	few
of	the	outcomes.	To	start,	consider	the	outcome	where	Firm	1	produces	three
units	and	Firm	2	produces	zero.	Firm	2	obviously	makes	no	profit,	as	it	neither
creates	nor	sells	any	units.	Meanwhile,	it	costs	Firm	1	$3	to	produce	three	units.



It	then	sells	those	units	at	the	price	that	the	market	demand	dictates:	Q	=	3	+	0
Q	=	3
P	=	$12	–	($2)(Q)
P	=	$12	–	($2)(3)
P	=	$12	–	$6
P	=	$6

	
So	Firm	1	sells	three	units	for	$6	each,	or	$18.	After	subtracting	the	$3	in

production	costs,	Firm	1	achieves	a	total	profit	of	$15.	Thus,	in	the	payoff
matrix,	Firm	1	earns	15	and	Firm	2	earns	0.

Now	suppose	both	Firm	1	and	Firm	2	produce	two	units.	Both	pay	$2	in
production.	They	then	sell	the	goods	at	the	market	price:	Q	=	2	+	2
Q	=	4
P	=	$12	–	($2)(Q)
P	=	$12	–	($2)(4)
P	=	$12	–	$8
P	=	$4
	

So	each	firm	sells	two	units	for	$4,	for	$8	in	gross	revenue.	After	subtracting
the	$2	in	production	costs,	the	firms	both	take	home	$6.	Hence,	in	the	payoff
matrix,	both	players	receive	an	expected	utility	of	6	if	they	both	produce	two
units.

For	the	final	example,	suppose	Firm	1	produced	three	units	and	Firm	2
produced	four.	This	time,	the	firms	have	collectively	produced	more	than	five
units.	In	that	case,	the	market	price	is	$0—the	firms	have	flooded	the	public	with
more	goods	than	people	are	willing	to	pay	for.	Consequently,	the	firms	eat	their
production	costs	and	receive	no	revenue.	In	the	payoff	matrix,	Firm	1	receives	-3
and	Firm	2	produces	-4.	Both	firms	would	have	been	better	off	had	not	they	not
produced	any	units	at	all.

Now	that	we	know	how	to	calculate	the	payoffs	for	all	of	the	36	outcomes,
let’s	jump	back	to	the	completed	payoff	matrix:	



With	a	little	patience,	this	game	is	easy	to	solve.	First,	compare	Firm	1’s
payoffs	for	producing	three	units	to	its	payoffs	for	producing	five	units:	

Regardless	of	Firm	2’s	production	level,	Firm	1	is	always	better	off
producing	three	units.	If	Firm	2	produces	zero,	three	beats	five	15	to	5.	Against
one,	three	remains	optimal	by	the	margin	of	9	to	-5.	Against	two,	the	margin	is
closer,	but	three	still	wins	3	to	-5.	Finally,	if	Firm	2	produces	three,	four,	or	five,
Firm	1	is	better	off	producing	three	units	and	earning	-3	than	producing	five	and
earning	-5.

Since	the	firms	have	symmetrical	production	capacities	and	sell	identical

products,	three	also	strictly	dominates	five	for	Firm	2:	
The	margins	are	exactly	the	same	as	in	the	previous	case.	Thus,	we	can

eliminate	five	as	a	strategy	for	both	firms,	leaving	the	following	remaining



game:	
Producing	three	also	strictly	dominates	producing	four	for	Firm	1:	

If	Firm	2	produces	zero,	three	beats	four	15	to	12.	Against	one,	three	wins	9
to	4.	Versus	two,	three	reigns	supreme	3	to	-4.	And	if	Firm	2	produces	three	or
four,	three	trumps	four	-3	to	-4.

Again,	the	strict	dominance	is	symmetrical	for	Firm	2:

As	a	result,	we	can	remove	four	from	the	game	for	both	players.	After	doing
so,	we	are	left	with	the	following	reduced	game:	

Notice	zero’s	relationship	with	one:



If	Firm	1	produces	zero,	it	guarantees	no	profit	at	all.	On	the	other	hand,
Firm	1	could	produce	one	unit	and	guarantee	some	profit.	Thus,	producing
nothing	has	become	an	unreasonable	strategy	for	Firm	1.

Of	course,	zero	is	an	equally	unreasonable	strategy	for	Firm	2	for	the	same

reason:	
After	we	remove	zero	from	the	matrix,	each	firm	is	down	to	only	three

strategies:	
Now	two	strictly	dominates	three:

If	Firm	2	produces	one,	two	beats	three	10	to	9.	Versus	two,	two	defeats
three	6	to	3.	Lastly,	against	three,	two	wins	once	more,	2	to	-3.

As	always,	the	same	is	true	for	Firm	2:

If	we	remove	these	strictly	dominated	strategies,	we	are	down	to	a	simple

2x2	game:	
This	game	is	just	like	a	prisoner’s	dilemma	from	last	lesson.	Two	strictly

dominates	one	for	both	players.	Here	is	the	comparison	for	Firm	1:	



If	Firm	2	produces	one,	Firm	2	prefers	producing	two	and	earning	10	rather
than	producing	one	and	earning	7.	Likewise,	if	Firm	1	produces	two,	two	is	still
better	for	Firm	2	by	a	6	to	5	margin.

The	same	holds	for	Firm	2:

Thus,	two	strictly	dominates	one	for	both	firms.	Despite	36	outcomes	in	the
original	game,	iterated	elimination	of	strictly	dominated	strategies	yields	a	single
solution.	Both	firms	produce	two	units.	With	four	total	units	on	the	market,	they
sell	for	$4	each.	The	firms	make	$8	in	gross	revenue	but	must	pay	$2	in
production	costs	for	a	net	profit	of	$6	apiece.

Note	that	the	<one,	one>	outcome	is	better	for	both	firms	than	the	<two,

two>	outcome,	as	they	both	receive	$7	in	net	profits:	
However,	the	<one,	one>	outcome	is	analogous	to	the	<quiet,	quiet>

outcome	in	the	prisoner’s	dilemma.	Although	the	firms	would	like	to	collude	to
reduce	production	quantities	and	in	turn	artificially	inflate	market	prices,	neither
firm	can	credibly	commit	to	that	course	of	action.	After	all,	if	one	firm	reduces
its	quantity	produced,	market	prices	go	up,	and	it	becomes	more	tempting	for	the
other	firm	to	break	the	agreement.	Here,	if	one	side	breaks	the	agreement	on	the
<one,	one>	outcome,	its	profits	shoot	up	to	$10.	Only	the	<two,	two>	outcome	is
inherently	stable.

	



1.2.3:	Does	Order	Matter?
Suppose	we	had	a	game	that	started	with	two	strictly	dominated	strategies.	A

natural	question	is	whether	we	will	end	up	with	a	different	answer	depending	on
which	one	we	choose	to	eliminate	first.

In	fact,	our	first	choice	is	irrelevant.	The	reason	for	this	is	a	little
complicated,	so	let’s	instead	look	at	a	couple	of	examples.	Earlier	in	this	section,
we	solved	the	prisoner’s	dilemma	by	eliminating	player	1’s	keep	quiet	strategy
first.	Based	off	of	the	remaining	game,	we	eliminated	keep	quiet	for	player	2.
Thus,	both	players	optimally	confessed.

However,	since	we	know	confessing	strictly	dominates	keeping	quiet	for
player	2	in	the	original	game,	we	could	have	started	by	removing	her	keep	quiet
strategy	first.	That	would	have	left	us	with	this	game:

Unsurprisingly,	confessing	strictly	dominates	keeping	quiet	in	this	reduced
game	for	player	1:

Since	-8	beats	-12,	player	1	should	confess.	Thus,	both	players	confess.
The	prisoner’s	dilemma	might	seem	like	a	trivial	example	given	that	the

players	face	a	symmetrical	situation.	Is	order	still	irrelevant	in	asymmetric
cases?	Yes.	For	example,	consider	this	game:

A	couple	different	paths	IESDS	paths	can	solve	this	game.	First,	note	that
middle	strictly	dominates	down	for	player	1:

That	is,	beats	-2	and	3	beats	2.	So	player	1	would	never	want	to	play	down,



which	reduces	the	original	game	to	the	following:

Notice	that	right	strictly	dominates	left	for	player	2:

This	is	because	2	beats	1	and	3	beats	2.	Thus,	we	can	eliminate	left	from	the
game:

And	now	the	game	boils	down	to	what	is	best	for	player	1:

Since	4	is	greater	than	3,	player	1	will	play	up.	Thus,	the	solution	is	<up,
right>.

Let’s	go	back	to	the	original	game:

While	middle	strictly	dominates	down,	note	that	right	also	strictly	dominates
left:

That	is,	2	beats	1,	3	beats	2,	and	-1	is	greater	than	-2.	So	instead	of
eliminating	down	to	start,	we	could	have	eliminated	left	instead.	Had	we	done



so,	the	reduced	game	would	have	looked	like	this:

From	here,	it	is	only	a	matter	of	selecting	player	1’s	greatest	payoff:

Since	4	is	greater	than	3	or	2,	player	1	plays	up.	Therefore,	we	end	up	at	the
<up,	right>	outcome	regardless	of	which	path	we	take.	This	holds	for	any	game
when	we	use	iterated	elimination	of	strictly	dominated	strategies.	Consequently,
when	you	are	solving	complex	games	and	you	find	a	strictly	dominated	strategy,
eliminate	it	immediately.	Although	there	may	be	more	strategies	you	could
eliminate	in	the	first	step,	these	strategies	will	still	be	strictly	dominated	in	the
next	step.	It	will	also	be	easier	to	find	them,	as	there	is	less	information	to
consider	in	the	remaining	game.
	



1.2.4:	Weak	Dominance
We	must	be	careful	when	we	use	iterated	elimination	of	strictly	dominated

strategies.	To	illustrate	a	potential	pitfall,	consider	this	game:

Let’s	first	focus	on	player	1’s	choice	between	up	and	middle:

You	might	be	tempted	to	say	that	middle	strictly	dominates	up	for	player	1.
However,	that	is	not	the	case.	If	player	2	plays	right,	then	middle	defeats	up,	as	3
is	greater	than	-4.	But	if	player	2	plays	left,	player	1	is	indifferent	between	up
and	middle;	regardless	of	which	he	chooses,	he	winds	up	with	a	payoff	of	0.
Strict	dominance	requires	middle	to	always	be	better	than	up;	equally	good	does
not	cut	it.

Instead,	we	say	that	middle	weakly	dominates	up.	In	general,	a	strategy	x
weakly	dominates	a	strategy	y	for	a	player	if	x	provides	at	least	as	great	of	a
payoff	for	that	player	regardless	of	what	the	other	players	do	and	there	is	at	least
one	set	of	opposing	strategies	for	which	x	pays	greater	than	y.

Eliminating	weakly	dominated	strategies	and	analyzing	the	remaining	game
is	called	iterated	elimination	of	weakly	dominated	strategies	(IEWDS).
Depending	on	the	game,	IEWDS	sometimes	produces	sensible	answers	and
sometimes	does	not.	Unfortunately,	we	do	not	know	which	type	of	game	we	are
looking	at	simply	by	eliminating	weakly	dominated	strategies.

To	fully	see	the	problem,	let’s	assume	we	could	use	IEWDS	the	same	way
we	use	IESDS.	Since	middle	weakly	dominated	up,	let’s	eliminate	up	and	see
what	happens:

We	now	see	that	left	weakly	dominates	right	for	player	2:



That	is,	3	is	equal	to	3	and	2	is	greater	than	-1.	If	we	eliminate	the	weakly
dominated	right	strategy,	this	game	remains:

Since	player	1	earns	0	for	middle	and	-2	for	down,	he	optimally	chooses
middle.	Thus,	we	conclude	that	the	outcome	of	this	game	is	<middle,	left>.

But	is	it?	Let’s	start	over:

We	began	last	time	by	observing	that	middle	weakly	dominates	up.
However,	middle	also	weakly	dominates	down:

That	is,	0	is	greater	than	-2	and	3	is	equal	to	3.	Eliminating	down	yields	the
following:

Now	we	see	that	right	weakly	dominates	left	for	player	2:

That	is,	2	is	greater	than	1	and	3	is	equal	to	3.	So	eliminating	left	leaves	us
with	this:



At	this	point,	player	1	picks	the	strategy	that	earns	him	the	highest	payoff.
Since	3	is	greater	than	-4,	he	selects	middle,	leaving	us	with	a	solution	of
<middle,	right>.	Yet	earlier	we	said	the	solution	was	<middle,	left>.	Depending
on	the	order	of	elimination,	IEWDS	produces	two	separate	answers.

The	problem	is	that	iterated	elimination	of	weakly	dominated	strategies
gives	us	no	guidance	about	which	is	correct	or	if	both	are.	To	resolve	the	issue,
we	need	to	introduce	a	broader	solution	concept.	We	will	do	that	in	the	next
lesson.

	



Takeaway	Points
1)	Iterated	elimination	of	strictly	dominated	strategies	simplifies	games	by
removing	strictly	dominated	strategies—strategies	that	players	would	never
play.	This	allows	players	to	make	inferences	based	on	what	others	will	not
play.
2)	Order	does	not	matter	for	IESDS.
3)	Strategy	x	weakly	dominates	strategy	y	for	a	player	if	x	provides	at	least	as
great	of	a	payoff	for	that	player	regardless	of	what	the	other	players	do	and
there	is	at	least	one	set	of	opposing	strategies	for	which	x	pays	greater	than	y.
4)	Iterated	elimination	of	weakly	dominated	strategies	sometimes	produces
multiple	answers.
5)	The	order	of	elimination	matters	for	IEWDS.



Lesson	1.3:	The	Stag	Hunt,	Pure	Strategy	Nash
Equilibrium,	and	Best	Responses

Two	hunters	enter	a	range	filled	with	hares	and	a	single	stag.	Hares	are
unintelligent	and	easy	to	capture.	The	stag,	on	the	other	hand,	is	cunning—the
hunters	can	only	catch	it	by	working	together.

Without	any	communication,	the	hunters	independently	choose	whether	to
hunt	hares	or	the	stag.	If	they	both	hunt	hares,	they	each	capture	half	of	the	hares
in	the	range.	If	one	hunts	the	stag	and	the	other	hunts	hares,	the	stag	hunter	goes
home	empty-handed	while	the	hare	hunter	captures	all	of	the	hares.	Finally,	if
both	hunt	the	stag,	then	each	of	their	shares	of	the	stag	is	greater	than	the	value
of	all	of	the	hares.

The	following	matrix	depicts	the	strategic	situation:	

Each	player	most	prefers	the	<stag,	stag>	outcome.	From	that,	we	might
assume	that	the	<stag,	stag>	is	the	only	sensible	outcome	of	the	game.	However,
as	we	will	see,	the	players	could	rationally	wind	up	at	a	different	outcome.

So	far,	we	only	know	how	to	solve	games	using	iterated	elimination	of
strictly	dominated	strategies.	Let’s	search	for	dominant	strategies	here.

First,	suppose	player	1	knew	that	player	2	will	hunt	the	stag:	

In	this	case,	hunting	the	stag	is	optimal	for	player	1	as	well:	doing	so	nets
him	3,	whereas	chasing	hares	gives	him	only	2.

Now	suppose	player	1	knew	player	2	will	hunt	hares:	
Hunting	the	stag	is	no	longer	optimal	for	player	1;	hare	has	stag	beat	by	a	1

to	0	margin.	Thus,	player	1	has	no	strictly	(or	weakly)	dominated	strategy.	In
fact,	player	1’s	optimal	strategy	is	completely	dependent	on	what	player	2



selects.	If	she	hunts	the	stag,	so	should	he;	but	if	she	hunts	for	hares,	he	ought	to
as	well.

Given	the	symmetry	of	the	game,	the	same	is	true	for	player	2:	she	should
also	play	whichever	strategy	player	1	selects.

To	verify	this,	suppose	player	1	hunted	the	stag:	

Player	2	should	choose	stag,	since	3	beats	2.

But	suppose	player	1	hunted	for	hares:	
Then	she	ought	to	opt	for	hares,	as	1	beats	0.
How	do	we	solve	games	lacking	dominated	strategies?	We	look	for	Nash

equilibria.	A	Nash	equilibrium	is	a	set	of	strategies,	one	for	each	player,	such
that	no	player	has	incentive	to	change	his	or	her	strategy	given	what	the	other
players	are	doing.

Some	examples	will	clarify	that	definition.	First,	consider	the	set	of
strategies	<stag,	stag>.	Does	either	player	have	incentive	to	change	his	or	her
strategy?

Let’s	look	at	this	from	the	perspective	of	player	1.	First,	we	have	to	hold
player	2’s	strategy	constant;	that	is,	we	assume	that	player	2	will	stick	to	her
strategy	of	stag.	Should	player	1	switch	his	strategy?

We	just	saw	this	image,	so	we	know	he	should	not:	3	still	beats	2.
What	about	player	2?	Similarly,	we	must	hold	player	1’s	strategy	constant

and	ask	whether	player	2	would	want	to	deviate	from	her	strategy:	

Once	more,	she	would	not	want	to:	3	remains	greater	than	2.	So	<stag,	stag>
is	a	Nash	equilibrium.	Specifically,	we	call	it	a	pure	strategy	Nash	equilibrium
(PSNE)	because	both	players	are	playing	deterministic	strategies.	That	is,	in	this
equilibrium,	player	1	always	plays	stag	and	player	2	always	plays	stag.	We	will
only	focus	on	PSNE	in	this	section.	(In	contrast,	Lesson	1.5	covers	mixed
strategy	Nash	equilibrium,	or	MSNE,	in	which	players	randomize	between	their



strategies.	For	example,	a	mixed	strategy	might	be	to	flip	a	coin	and	hunt	hares
on	heads	and	the	stag	on	tails.)	Are	there	any	other	PSNE?	Let’s	start	by	seeing
if	player	1	would	want	to	switch	his	strategy	in	the	<stag,	hare>	outcome:	

He	should	alter	his	strategy.	If	he	keeps	hunting	a	stag,	he	will	end	up	with	0.
But	if	he	switches	his	strategy	to	hare,	he	can	profitably	deviate	to	1.

If	even	a	single	player	would	want	to	deviate,	a	set	of	strategies	is	not	a	Nash
equilibrium.	So	without	even	checking	player	2’s	move,	we	can	throw	out	<stag,
hare>	as	an	equilibrium	candidate.	But	let’s	check	anyway	for	the	sake	of

practice:	
This	is	the	third	time	we	have	seen	this	image,	so	by	now	we	should	know

player	2	has	a	profitable	deviation:	she	should	switch	to	stag.
Now	let’s	check	whether	<hare,	stag>	is	a	Nash	equilibrium.	Given	the

game’s	symmetry	and	how	<stag,	hare>	is	not	a	Nash	equilibrium,	it	should	be
obvious	that	<hare,	stag>	is	not	either.	To	wit,	consider	player	1’s	choice:	

Currently,	he	earns	2;	if	he	switches	to	stag,	he	receives	3.	Since	that	is	a
profitable	deviation,	<hare,	stag>	is	not	a	Nash	equilibrium.

Once	more,	we	could	have	also	verified	that	<hare,	stag>	is	not	a	Nash

equilibrium	by	looking	at	player	2’s	choice:	
Optimally,	player	2	should	switch	from	hunting	the	stag	and	earning	0	to

chasing	hares	and	earning	1.
Finally,	let’s	check	whether	<hare,	hare>	is	a	Nash	equilibrium.	We	will

begin	with	player	1’s	choice:	
Hare	remains	optimal	for	player	1;	switching	to	stag	decreases	his	payoff

from	1	to	0.	So	the	only	way	for	<hare,	hare>	to	not	be	a	Nash	equilibrium	is	if



player	2	would	want	to	switch.	Let’s	check	if	that	is	the	case:	

She	should	not	switch—deviating	also	decreases	her	payoff	from	1	to	0.
Since	neither	player	has	incentive	to	change	his	or	her	strategy,	<hare,	hare>	is	a
Nash	equilibrium.	Therefore,	the	stag	hunt	has	two	pure	strategy	Nash	equilibria:
<stag,	stag>	and	<hare,	hare>.

Unlike	the	prisoner’s	dilemma,	the	stag	hunt	illustrates	game	theory’s	power
to	analyze	interdependent	decision	making.	In	the	prisoner’s	dilemma,	each
player	could	effectively	ignore	what	the	other	one	planned	on	doing	since
confess	generated	a	strictly	greater	payoff	regardless	of	the	other	prisoner’s
choice.	That	is	not	the	case	with	the	stag	hunt.	Here,	each	player	wants	to	do
what	the	other	is	doing.	That	is,	each	player’s	individually	optimal	strategy	is	a
function	of	the	other	player’s	choice.

The	stag	hunt	also	highlights	how	Nash	equilibria	do	not	have	to	be	efficient.
Indeed,	both	players	are	better	off	with	the	<stag,	stag>	equilibrium	than	the
<hare,	hare>	equilibrium—and,	unlike	the	prisoner’s	dilemma,	both	outcomes
are	sustainable,	because	neither	player	has	incentive	to	change	his	or	her	strategy
given	what	the	other	is	doing.	As	such,	although	the	players	might	want	to
coordinate	on	the	<stag,	stag>	outcome,	they	might	get	stuck	in	the	inefficient
<hare,	hare>	outcome	anyway.

To	see	how	this	is	plausible,	suppose	both	players	saw	a	sign	that	read
“today	is	hare	hunting	day”	on	their	way	to	the	hunting	range.	What	should	the
hunters	do?	Unfortunately,	the	structure	of	the	game	provides	no	clear	answer.	It
is	in	each	hunter’s	best	interest	to	ignore	the	sign	and	hunt	a	stag,	as	long	as	both
do	that.	But	if	I	think	that	you	are	going	to	follow	the	sign	and	hunt	hares,	then	I
should	follow	the	sign	as	well,	even	if	I	really	want	to	hunt	a	stag.	And	if	you
think	I	am	going	to	think	that	you	are	going	to	follow	the	sign,	even	if	you	have
no	plans	to	do	so,	you	should	still	hunt	hares	because	you	anticipate	that	I	will	as
well.	Simple	coordination—a	cell	phone	call	from	one	honest	hunter	to	the	other
—could	solve	the	issue.	But	absent	that,	both	outcomes	are	plausible,	which	is
one	of	the	motivations	behind	Nash	equilibria.

As	a	final	note,	Nash	equilibrium	only	looks	at	individual	deviations.	That	is,
we	need	to	check	whether	individuals	cannot	individually	deviate	to	better
payoffs.	If	both	players	are	playing	hare,	then	there	is	a	collectively	profitable
deviation	to	both	playing	stag.	But	individually,	both	are	better	off	staying	with
their	hare	strategy.	In	this	sense,	Nash	equilibrium	has	a	“no	regrets”	property.	If
players	play	according	to	a	Nash	equilibrium,	then	they	do	not	regret	their



choices	once	they	have	realized	their	payoffs.
	



1.3.1:	New	Preferences	for	the	Prisoner’s	Dilemma
Lesson	1.1	claimed	that	if	players	did	not	solely	want	to	minimize	jail	time,

their	optimal	behaviors	might	change.	Indeed,	game	theory	was	not	making	a
normative	claim	that	jail	time	is	the	only	thing	that	players	should	care	about;
instead,	we	were	seeking	the	optimal	behaviors	of	the	prisoners	given	that	they
had	such	preferences.

With	that	in	mind,	let’s	reframe	the	game.	Suppose	both	prisoners	were	good
friends	and	would	rather	keep	quiet	if	they	knew	that	the	other	would	as	well.	In
this	case,	each	player’s	most	preferred	outcome	is	<quiet,	quiet>,	then	<confess,
quiet>,	then	<confess,	confess>,	then	<quiet,	confess>.	Payoff	values	of	3,	2,	1,
and	0	preserve	the	rankings	of	these	outcomes.	Consequently,	we	could	draw	the
payoff	matrix	like	this:

Notice	that	these	are	the	exact	same	payoffs	that	we	saw	in	the	stag	hunt.	As
such,	there	are	two	PSNE:	<keep	quiet,	keep	quiet>	and	<confess,	confess>.
Now	the	interrogator’s	plan	may	fail,	as	the	players	have	a	strong	enough
relationship	that	their	preferences	allow	for	mutual	cooperation.	That	is,	<keep
quiet,	keep	quiet>	is	a	sustainable	outcome	in	this	version	of	the	prisoner’s
dilemma,	as	neither	player	has	incentive	to	deviate	from	that	set	of	strategies.

This	reworking	of	the	prisoner’s	dilemma	provides	two	takeaways.	First,	it
shows	how	outcomes	are	a	function	of	preferences	and	not	just	the	strategic
environment.	The	interrogator	made	the	same	offer	in	both	versions	of	the	game.
In	the	original	version,	he	induced	both	to	confess.	But	when	the	players	had
friendlier	preferences,	his	plot	could	very	well	fail,	provided	the	prisoners	can
coordinate	on	the	<quiet,	quiet>	equilibrium.

Second,	it	once	again	highlights	game	theory’s	ability	to	draw	parallels
between	seemingly	dissimilar	situations.	In	this	section	alone,	we	have	looked	at
two	completely	different	scenarios.	One	dealt	with	hunting;	the	other	dealt	with
two	friends	in	a	legal	predicament.	Yet,	once	we	strip	down	all	of	the	irrelevant
features	of	the	strategic	interaction,	we	see	that	a	single	game	underlies	both
cases.	In	this	way,	game	theory	allows	us	to	connect	seemingly	disparate
situations	under	a	common	framework.
	



1.3.2:	Safety	in	Numbers	and	Best	Responses
Two	generals	each	have	three	units	and	are	preparing	for	an	upcoming	battle.

Each	can	choose	to	send	any	number	of	units	to	the	fight	or	none	at	all.	The	side
with	more	troops	wins	the	battle,	and	the	fight	will	draw	if	there	are	equal	forces.
Victory	is	worth	1	point;	defeat	is	worth	-1.	If	the	sides	draw	or	at	least	one	side
refuses	to	fight,	both	sides	earn	0.

This	is	a	“safety	in	numbers”	game,	and	the	following	matrix	represents	the
generals’	situation:

When	we	found	all	the	pure	strategy	Nash	equilibria	in	the	stag	hunt,	we
went	through	each	outcome	one	at	a	time	and	checked	whether	a	player	had	a
profitable	deviation.	While	that	was	a	reasonable	task	when	there	were	only	four
outcomes,	safety	in	numbers	has	sixteen.	We	could	go	through	each	of	the
sixteen	outcomes,	but	that	would	be	time	consuming.	Instead,	we	will	use	a
different	method	that	involves	marking	best	responses.

A	best	response	is	simply	the	optimal	strategy	for	a	particular	player	given
what	everyone	else	is	doing.	For	example,	suppose	general	2	was	going	to	send	0
units	to	the	battle.	What	is	general	1’s	best	response?

As	the	image	demonstrates,	general	1’s	strategy	becomes	irrelevant—the
battle	never	takes	place,	so	every	choice	generates	a	payoff	of	0	for	him.	As
such,	all	of	these	strategies	are	best	responses	for	general	1.	For	bookkeeping
purposes,	we	mark	a	player’s	best	responses	with	an	asterisk	over	his	or	her
payoffs,	like	this:



We	will	see	why	these	asterisks	come	in	handy	in	a	moment.
Now	suppose	general	2	will	send	one	unit	to	the	battle.	Let’s	mark	the	first

general’s	best	responses:

Two	best	responses	exist:	sending	two	and	sending	three	units.	Sending	zero
units	results	in	no	battle	taking	place	and	a	payoff	of	0.	Sending	one	unit	results
in	a	draw	and	a	payoff	of	0.	Sending	two	or	sending	three	units	gives	general	1
the	victory	and	a	payoff	of	1.	Since	1	is	the	greatest	payoff,	we	mark	two	and
three	as	best	responses.

Next,	suppose	general	2	sent	two	units	to	the	battle:

Here,	sending	one	loses	the	battle,	sending	two	leads	to	a	draw,	and	sending
three	earns	the	win.	Since	the	payoff	of	1	is	the	greatest	of	all	the	outcomes,
general	1’s	best	response	is	to	send	three	units.	As	such,	only	three	gets	an
asterisk.

Lastly,	suppose	general	2	sent	three	units:



Now	there	are	two	best	responses.	If	general	1	sends	one	or	two	units,	he
loses	the	battle	and	earns	-1.	If	he	sends	no	one,	the	battle	does	not	take	place,
and	he	gets	0.	And	if	he	sends	everyone,	the	battle	draws,	and	he	also	receives	a
payoff	of	0.	Both	of	the	0	outcomes	are	the	best,	so	both	earn	asterisks.

Having	marked	all	of	general	1’s	best	responses,	the	game	looks	like	this:

However,	we	are	only	half	way	done—we	still	need	to	mark	general	2’s	best
responses.	As	before,	let’s	start	by	assuming	general	1	will	send	zero	units:

We	see	that	every	strategy	is	a	best	response	for	general	2	if	general	1	sends
zero	units.

Now	check	what	happens	if	general	2	sends	one	unit:

Sending	two	or	three	units	nets	1.	Therefore,	two	and	three	are	best
responses.

Next,	let’s	consider	general	2’s	best	responses	to	general	1	sending	two
units:

Sending	three	units	nets	1	point,	whereas	the	other	alternatives	are	worth	0
or	-1.	So	sending	three	units	is	the	only	best	response	here.

Finally,	suppose	general	1	sent	three	units:



Now	one	and	two	are	losing	strategies,	while	zero	and	three	break	even	at	0.
So	zero	and	three	are	best	responses.

Combining	all	of	that	information	together,	the	full	game	looks	like	this:

Was	all	of	that	work	worth	the	effort?	Most	definitely.	To	find	all	of	the
game’s	pure	strategy	Nash	equilibria,	we	only	need	to	check	which	outcomes
have	asterisks	next	to	both	players’	payoffs.	We	see	there	are	four	such
outcomes:	<0,	0>,	<0,	3>,	<3,	0>,	and	<3,	3>.

Why	are	these	outcomes	Nash	equilibria?	Recall	that	a	Nash	equilibrium	is	a
set	of	strategies,	one	for	each	player,	such	that	no	player	has	incentive	to	change
his	or	her	strategy	given	what	the	other	players	are	doing.	If	an	outcome	is	a	best
response	for	a	player,	he	or	she	cannot	change	strategies	and	earn	a	greater
payoff.	But	if	the	outcome	is	a	best	response	for	all	players,	no	player	has
incentive	to	change	his	or	her	strategy.	That	matches	our	definition	of	Nash
equilibrium.

As	such,	an	alternative	definition	of	Nash	equilibrium	is	a	mutual	best
response.	This	equivalent	definition	can	come	in	handy	depending	on	the	game
in	question.
	



1.3.3:	The	Stoplight	Game
We	have	seen	the	definition	of	Nash	equilibrium	many	times	now.	But	what

exactly	does	it	mean?	One	interpretation	is	that	a	Nash	equilibrium	is	a	law	that
everyone	would	want	to	follow	even	in	the	absence	of	an	effective	police	force.

For	example,	consider	the	role	of	stoplights	in	a	society.	Imagine	two	cars
are	approaching	an	intersection	at	40	miles	per	hour	from	perpendicular
directions.	If	both	continue	full	speed,	they	will	crash	spectacularly.	But	if	both
stop,	they	waste	time	deciding	who	should	go	through	the	intersection	first.	Both
drivers	benefit	if	one	continues	without	stopping	while	the	other	momentarily
brakes	to	allow	the	other	to	pass.

We	can	illustrate	the	drivers’	choices	and	preferences	using	the	following

matrix:	
Let’s	mark	the	game’s	best	responses.	First,	suppose	player	2	chose	go.	How

should	player	1	respond?

Stopping	is	optimal.	If	player	1	goes	as	well,	he	causes	a	devastating
accident.	Although	stopping	slows	player	1	down,	at	least	he	will	make	it	to	his
destination	alive.

Now	suppose	player	2	picked	stop	instead:

Stopping	is	unnecessary	for	player	1,	as	it	results	in	an	awkward	moment
where	the	drivers	try	to	decide	who	ought	to	drive	off	first.	Meanwhile,	if	player
1	goes,	he	arrives	at	his	destination	as	quickly	as	possible.	As	such,	the	1	for	go
receives	the	asterisk.

The	story	is	the	same	for	player	2’s	best	responses.	If	player	1	goes,	player	2

ought	to	stop:	
After	all,	0	is	greater	than	-5.



But	if	player	1	stops,	player	2	should	go:

This	time,	1	is	greater	than	-1.
If	we	fold	these	best	responses	together,	the	original	game	looks	like	this:	

So	the	game	has	two	pure	strategy	Nash	equilibria:	<go,	stop>	and	<stop,
go>.	While	these	Nash	equilibria	leave	both	players	better	off	than	the	<go,	go>
or	<stop,	stop>	outcomes,	player	1	prefers	the	<go,	stop>	equilibrium	while
player	2	prefers	the	<stop,	go>	equilibrium.	Consequently,	coordination	is	not
straightforward;	player	1	wants	his	version	of	coordination,	while	player	2	wants
hers.

How	can	the	players	resolve	their	dilemma?	Stoplights	provide	a	solution.
The	stoplight	tells	one	driver	to	go	with	a	green	light,	while	it	orders	the	other	to
stop	with	a	red	light.	The	players	have	no	incentive	to	deviate	from	the
stoplight’s	suggestion.	If	the	driver	at	the	red	light	goes,	he	causes	an	accident.	If
the	driver	at	the	green	light	stops,	he	unnecessarily	wastes	some	time.	Thus,	the
stoplight	instructs	the	drivers	to	play	a	Nash	equilibrium.

Note	that	these	strategies	are	self-reinforcing.	One	driver	wants	to	stop
because	he	knows	the	other	driver	will	go.	Likewise,	the	other	driver	wants	to	go
because	he	knows	the	first	driver	will	stop.	The	players	do	not	need	a	third	party
—say,	police	officers—to	enforce	the	equilibrium.	Instead,	each	player	naturally
wants	to	execute	his	intended	strategy	because	the	other	player’s	strategy	makes
it	optimal	for	him	to	do	so.	Again,	this	is	due	to	the	no	regrets	property	of	Nash
equilibrium.	Drivers	follow	the	stoplight	because	they	know	they	will	not	regret
doing	so	afterward.

	



Conclusion
Since	the	best	responses	method	is	an	efficient	way	of	to	find	pure	strategy

Nash	equilibria,	we	will	be	relying	on	it	in	upcoming	lessons.	Consequently,	if
you	do	not	yet	have	the	hang	of	it,	there	will	be	plenty	more	practice	ahead.

	



Takeaway	Points
1)	A	Nash	equilibrium	is	a	set	of	strategies,	one	for	each	player,	such	that	no
player	has	incentive	to	change	his	or	her	strategy	given	what	the	other	players
are	doing.
2)	A	player’s	best	response	is	the	strategy	or	strategies	that	produce	the
greatest	payoff	given	all	other	players’	strategies.
3)	We	can	find	pure	strategy	Nash	equilibrium	by	marking	each	player’s	best
responses	in	a	game	matrix.	Outcomes	that	are	best	responses	for	all	players
are	Nash	equilibria.
4)	Nash	equilibria	can	be	thought	of	as	laws	that	no	one	would	want	to	break
even	in	the	absence	of	an	effective	police	force.
5)	Nash	equilibria	have	a	“no	regrets”	property—after	the	game	has	been
played,	players	do	not	regret	their	choices	if	all	were	playing	a	Nash
equilibrium.



Lesson	1.4:	Dominance	and	Nash	Equilibrium
This	lesson	investigates	the	relationship	between	Nash	equilibrium	and

dominance.	We	will	see	two	things.	First,	if	iterated	elimination	of	strictly
dominated	strategies	reduces	the	game	to	a	single	outcome,	that	outcome	is	a
Nash	equilibrium	and	it	is	the	only	Nash	equilibrium	of	that	game.	Meanwhile,
iterated	elimination	of	weakly	dominated	strategies	is	not	as	kind:	although	any
solution	found	through	IEWDS	is	a	Nash	equilibrium,	the	IEWDS	process
sometimes	eliminates	other	Nash	equilibria.

	



1.4.1:	Nash	Equilibrium	and	Iterated	Elimination	of	Strictly	Dominated
Strategies

How	does	Nash	equilibrium	relate	to	iterated	elimination	of	strictly
dominated	strategies?	As	it	turns	out,	solutions	found	through	the	strict
dominance	solution	concept	are	Nash	equilibria.	Consequently,	not	only	is
<confess,	confess>	the	dominance	solution	to	the	prisoner’s	dilemma	from
Lesson	1.1,	but	it	is	also	the	Nash	equilibrium	of	that	game.

Let’s	consider	a	tougher	example.	Here	is	the	game	from	Lesson	1.2	we	used
to	introduce	iterated	elimination	of	strictly	dominated	strategies:	

Through	IESDS,	we	know	the	solution	is	<middle,	center>.	Let’s	verify	that
it	is	also	the	unique	pure	strategy	Nash	equilibrium	of	the	game.

First,	let’s	find	player	1’s	best	response	to	left:

Up	earns	the	asterisk,	as	13	is	the	largest	payoff.

Moving	on,	suppose	player	2	chose	center:	
Middle	gets	the	asterisk	this	time,	as	3	is	now	the	largest	payoff	for	player	1.
Lastly	for	player	1’s	best	responses,	we	consider	player	2	moving	right:	

Down	earns	the	asterisk	with	a	payoff	of	8.
Switching	gears,	let’s	find	the	best	responses	for	player	2	if	player	1	moves



up:	
With	4	being	the	largest,	player	2’s	best	response	is	to	move	center.
Now	suppose	player	1	moved	middle:

Center	remains	the	best	response,	with	3	being	greater	than	1	or	2.
Finally,	consider	how	player	2	should	reply	to	down:

Player	2’s	best	response	has	shifted	to	left.
If	we	reconstruct	the	original	game	with	all	of	the	best	responses	marked,	we

get	this:	
The	only	mutual	best	response	is	<middle,	center>.	As	claimed,	the	solution

IESDS	is	the	only	Nash	equilibrium	of	the	game.
Why	does	this	work?	Recall	that	Nash	equilibrium	strategies	have	the	“no

regrets”	property.	Yet	players	immediately	regret	having	played	strictly
dominated	strategies,	since	they	could	have	performed	better	by	selecting	the
dominating	strategy.	As	a	result,	if	IESDS	produces	a	single	outcome,	the
strategies	associated	with	that	outcome	are	the	only	strategies	that	players	will
not	regret	having	selected.	In	turn,	those	strategies	form	the	only	Nash
equilibrium.

	



1.4.2:	When	IESDS	Leaves	Multiple	Strategies
After	eliminating	all	strictly	dominated	strategies,	sometimes	multiple

strategies	remain	available	for	each	player.	How	do	we	handle	this?	We	simply
fall	back	to	the	other	techniques	to	find	Nash	equilibria.

To	illustrate,	let’s	add	some	spice	to	the	stag	hunt.	This	time,	player	1	can
hunt	a	stag,	hares,	or	player	2.	To	keep	player	2	from	being	defenseless,	she	can
hunt	a	stag,	hunt	hares,	or	hide	from	player	1.	If	player	1	goes	after	his	hunting
partner	and	player	2	hides,	then	player	2	survives.	Otherwise,	she	earns	an
extremely	negative	payoff.	(She	will	be	shot,	after	all.)	Fortunately	for	player	2,
player	1	will	feel	guilty	if	he	ever	shoots	player	2,	so	he	also	earns	a	negative
payoff	if	she	is	ever	hurt.

Adding	these	new	strategies	and	payoffs	leaves	us	with	this	game:

To	solve	this	game,	we	should	first	note	that	hare	strictly	dominates	human
for	player	1:

That	is,	2	beats	-5,	1	beats	-5,	and	2	beats	0.	Knowing	that,	we	can	remove
human	as	a	strategy	and	consider	the	following:

From	here,	note	that	hare	strictly	dominates	hide	for	player	2:

This	is	because	2	is	greater	than	0	and	1	is	also	greater	than	0.	Essentially,
player	2	has	no	reason	to	hide	if	she	knows	player	1	would	never	hunt	her.

If	we	remove	hide,	the	game	reduces	to	the	original	stag	hunt:



From	Lesson	1.3,	we	know	no	more	dominated	strategies	remain.	To	solve
the	game,	we	simply	look	for	Nash	equilibria	as	before.	The	two	mutual	best
responses	in	pure	strategies	are	<stag,	stag>	and	<hare,	hare>,	so	those	are	the
two	pure	strategy	Nash	equilibria	of	this	game.	More	pertinent	to	this	topic,
however,	they	are	also	the	only	two	PSNE	of	the	original	game	with	human
hunting	and	hiding.

	



1.4.3:	Nash	Equilibrium	and	Iterated	Elimination	of	Weakly	Dominated
Strategies

Previously,	we	looked	at	this	game:

Middle	weakly	dominates	both	up	and	down	for	player	1.	Depending	on
whether	we	chose	to	eliminate	up	or	down	first	as	a	part	of	a	sequence	of	iterated
elimination	of	weakly	dominated	strategies,	either	<middle,	left>	or	<middle,
right>	was	the	only	outcome	that	remained.	So	which	of	these	is	a	pure	strategy
Nash	equilibrium?	Actually,	both	are.

As	always,	let’s	mark	the	best	responses	for	both	players.	Begin	by	checking

what	happens	if	player	1	plays	up:	
Since	2	beats	1,	right	is	player	2’s	best	response.
Now	check	middle:

If	player	1	plays	middle,	player	2	is	indifferent	between	left	and	right;	both
are	worth	3	to	her.	As	such,	both	are	best	responses.

Lastly,	we	go	to	down:

Left	is	the	best	response	here,	as	2	beats	-1.
From	here,	we	move	to	player	1’s	best	responses,	beginning	with	player	2

moving	left:	
Up	and	middle	are	both	best	response	to	left;	they	are	both	worth	0,	while

down	yields	-2.
The	final	situation	to	consider	is	player	2	moving	right:



Again,	player	1	has	two	best	responses:	middle	and	down.
Thus,	the	full	game	looks	like	this:

We	see	that	both	<middle,	left>	and	<middle,	right>	are	mutual	best
responses.	Therefore,	both	are	pure	strategy	Nash	equilibria.

This	game	only	offers	a	hint	of	why	it	is	not	a	good	idea	to	exclusively	rely
on	weakly	dominated	strategies.	After	all,	as	long	as	you	had	considered	every
alternative	sequence	IEWDS	for	this	game,	you	would	have	found	all	the	Nash
equilibria.	But	weak	dominance	is	much	more	finicky	than	that.	In	fact,	even	if
there	is	only	one	path	of	elimination,	IEWDS	may	completely	erase	a	Nash
equilibrium.

Let’s	use	this	game	as	an	example:

The	only	dominance	here	is	involves	left	and	right	for	player	2:	

Specifically,	left	weakly	dominates	right.	That	is,	if	player	1	plays	up,	she	is
equally	well	off	playing	left	or	right,	but	she	does	strictly	better	playing	left	if	he
moves	down.

If	we	remove	right	from	the	game,	this	game	remains:	
Since	down	now	strictly	dominates	up	for	player	1,	<down,	left>	is	the



solution	that	remains	and	it	was	also	the	only	solution	we	can	arrive	at	through
iterated	elimination	of	weakly	dominated	strategies.

Unfortunately,	best	responses	tell	a	different	story.	Let’s	start	with	player	1’s

best	response	to	player	2	playing	left:	
As	we	just	saw,	it	is	down.	Therefore,	the	3	receives	the	asterisk.
Now	check	for	player	1’s	best	response	to	right:

Player	1’s	best	response	has	flipped	to	up,	as	4	beats	1.
Switching	perspectives,	let’s	mark	player	2’s	best	response	to	player	1

moving	up:	
When	player	1	goes	up,	player	2	is	indifferent	between	left	and	right.	As

such,	both	are	best	responses.
Finally,	let’s	check	what	happens	when	player	1	plays	down:

This	time,	left	is	the	unique	best	response.
Let’s	bring	all	the	best	responses	together:

From	this,	we	see	there	are	two	pure	strategy	Nash	equilibria:	<up,	right>
and	<down,	left>.	There	is	no	way	we	could	have	used	iterated	elimination	of
weakly	dominated	strategies	to	arrive	at	<up,	right>,	which	is	why	it	is	so
dangerous	to	use	IEWDS	by	itself.

On	the	other	hand,	sometimes	IEWDS	turns	out	just	fine.	To	wit,	consider



this	game:	
To	start,	note	that	middle	weakly	dominates	up:

Middle	always	produces	at	least	as	great	of	a	payoff	as	up.	When	player	2
plays	center,	middle	beats	up	by	5	to	4.	When	she	plays	right,	middle	again	wins
by	7	to	4.	However,	both	up	and	middle	are	worth	2	when	she	selects	left.

If	we	eliminated	up	as	a	strategy,	the	game	reduces	to	this:

And	now	center	strictly	dominates	left	for	player	2:

If	player	1	selects	middle	or	down	and	player	2	chooses	left,	player	2	earns
4.	In	contrast,	she	earns	5	if	player	1	plays	middle	and	7	if	he	plays	down.	So
center	strictly	dominates	left	in	the	remaining	game.	Removing	left	yields	the

following:	
Notice	that	center	also	strictly	dominates	right:	

That	is,	5	beats	3	and	7	beats	6.	So	we	can	remove	right	from	the	game:	



At	this	point,	player	1	should	pick	middle	and	earn	5	rather	than	choose
down	and	earn	3.	Therefore,	<middle,	center>	is	the	IEWDS	solution	and	a	pure
strategy	Nash	equilibrium	by	extension.

Unlike	previous	examples,	however,	it	is	also	the	unique	pure	strategy	Nash
equilibrium	of	the	game.	We	can	verify	this	through	best	responses.	Let’s	begin

with	player	1’s	choice	if	player	2	goes	left:	
Since	3	is	the	largest	number	there,	down	receives	the	asterisk.
Next,	check	for	player	1’s	response	to	center:

Again,	there	is	a	single	best	response:	middle	with	5,	beating	up	with	4	and
down	with	3.

For	the	final	best	response	for	player	1,	we	check	what	happens	when	player

2	plays	right:	
Middle	wins	once	more	with	a	7.
Switching	to	the	other	side,	let’s	find	player	2’s	best	response	if	player	1

goes	up:	
Right	wins,	as	it	is	worth	3	in	response	to	up	compared	to	the	2	for	left	or

center.
Moving	on,	we	now	look	at	the	best	response	to	middle:



Here,	the	5	for	center	beats	out	the	4	for	left	and	the	3	for	right.	So	center	is
player	2’s	best	response	to	middle.

Finally,	we	go	to	the	best	response	to	down:

For	the	second	time,	center	is	the	best	response.
Throwing	all	of	that	together,	the	whole	game	looks	like	this:

We	see	there	is	a	single	mutual	best	response:	<middle,	center>.
Fortuitously,	this	was	also	the	answer	iterated	elimination	of	weakly	dominated
strategies	gave	us.	For	once,	IEWDS	actually	functioned	nicely.

You	might	wonder	how	you	can	tell	whether	IEWDS	will	work	before	you
start	solving	the	problem.	Unfortunately,	you	cannot.	It	either	will	eliminate
Nash	equilibria	or	it	will	not,	and	you	will	not	know	which	is	the	case	until	you
check	for	best	responses.
	



1.4.4:	Simultaneous	Strict	and	Weak	Dominance
Occasionally,	you	will	encounter	a	game	that	has	both	strictly	and	weakly

dominated	strategies	in	it.	How	should	you	go	about	solving	the	game?	The	most
efficient	answer	is	to	begin	by	eliminating	all	of	the	strictly	dominated	strategies
and	only	falling	back	on	weak	dominance	when	strict	dominance	cannot	get	you
any	further.	The	reason	is	simple:	as	soon	as	we	eliminate	a	weakly	dominated
strategy—even	just	once—we	may	be	eliminating	some	Nash	equilibria.

To	illustrate	why	you	should	eliminate	strictly	dominated	strategies	first,

consider	this	game:	
Note	that	up	weakly	dominates	middle	for	player	1:

That	is,	if	player	2	plays	left,	player	1	is	indifferent	between	up	and	middle;
but	if	player	2	plays	right,	player	1	earns	more	from	up	than	he	does	from
middle.	As	such,	up	weakly	dominates	middle.

Removing	middle	from	the	matrix	yields	this:

Now	left	strictly	dominates	right	for	player	2:

This	is	because	1	beats	-2	and	3	beats	2.	So	if	we	remove	the	strictly

dominated	strategy,	we	are	left	with	the	following:	
At	this	point,	player	1	picks	the	strategy	that	gives	him	the	greatest	payoff,

so	he	selects	up.	Thus,	we	have	arrived	at	<up,	left>	being	a	solution	to	this



game.	Since	a	Nash	equilibrium	in	a	reduced	game	must	also	be	a	Nash
equilibrium	any	of	the	previous	games,	<up,	left>	is	a	Nash	equilibrium	in	the
original	game.

However,	if	we	highlight	the	best	responses	of	the	original	game,	we	find
that	the	IEWDS	process	has	eliminated	another	Nash	equilibrium.	To	see	this,

consider	player	1’s	best	response	to	player	2	moving	left:	
There	are	two:	up	and	middle.	Both	provide	1,	whereas	down	provides	0.	As

such,	up	and	middle	are	best	responses,	but	down	is	not.

Now	let’s	check	for	player	1’s	best	response	to	right:	
Again,	there	are	two:	up	and	down.	Middle	loses	out	here	by	a	score	of	2	to

1.
Switching	gears,	we	move	to	player	2’s	best	response	to	up:	

Here,	left	is	the	best	response,	as	1	beats	-2.
Moving	on	to	middle:

Again,	left	wins,	so	it	earns	the	asterisk.
Finally,	we	go	to	down:

For	a	third	time,	left	is	the	best	response.
Putting	all	of	those	best	responses	together,	this	is	what	the	original	game



looks	like:	
Weak	dominance	has	failed	us	once	more:	IEWDS	produced	an	answer	of

<up,	left>,	but	both	<up,	left>	and	<middle,	left>	are	mutual	best	responses	and
are	therefore	pure	strategy	Nash	equilibria.	Utilizing	weak	dominance	would
have	yielded	only	a	partially	correct	answer	here.

However,	you	might	have	noticed	in	the	process	of	marking	best	responses
that	left	strictly	dominates	right—regardless	of	what	player	1	does,	player	2
earns	more	by	picking	left	than	she	does	by	picking	right.	So	instead	of
beginning	the	elimination	sequence	with	up	weakly	dominating	middle,	we
could	have	begun	by	removing	right.	Had	we	done	so,	we	would	have	been

looking	at	this	game:	
At	this	point,	up	and	middle	both	strictly	dominate	down,	since	1	is	greater

than	0.	Reducing	the	game	one	step	further,	we	are	left	with	only	two	outcomes:	

Since	both	up	and	middle	are	best	responses	to	left,	both	<up,	left>	and
<middle,	left>	are	the	IESDS	solutions.	And	as	we	already	know,	they	are	also
the	only	pure	strategy	Nash	equilibria	of	the	original	game.	Consequently,
IESDS	has	preserved	all	the	Nash	equilibria.

Attacking	the	strictly	dominated	strategies	first	side-stepped	the	weak
dominance	problem.	After	we	removed	right	from	the	game,	no	instance	of	weak
dominance	remained,	only	more	cases	of	strict	dominance.	Unfortunately,	this
will	not	always	be	the	case:	sometimes	after	removing	all	strictly	dominated
strategies	weakly	dominated	strategies	still	exist.	At	this	point	you	have	to	go
through	the	best	responses	of	the	post-IESDS	game	as	usual.	However,	when	it
does	work,	IESDS	saves	you	a	lot	of	time.	As	such,	always	pinpoint	the	strictly
dominated	strategies	before	you	move	on	to	weakly	dominated	strategies.

	



Takeaway	Points
1)	If	IESDS	leaves	a	single	outcome,	that	outcome	is	the	unique	Nash
equilibrium.
2)	IESDS	never	eliminates	Nash	equilibria,	but	IEWDS	can.
3)	Always	remove	a	strictly	dominated	strategy	before	removing	a	weakly
dominated	strategy.



Lesson	1.5:	Matching	Pennies	and	Mixed	Strategy
Nash	Equilibrium

Here	is	a	simple	game.	You	and	I	each	have	a	penny.	Simultaneously,	we
choose	whether	to	put	our	penny	on	the	table	with	heads	or	tails	facing	up.	If
both	of	the	pennies	show	heads	or	both	of	the	pennies	show	tails	(that	is,	they
match),	then	you	have	to	pay	me	a	dollar.	But	if	one	shows	heads	and	the	other
shows	tails	(that	is,	they	do	not	match),	then	I	have	to	pay	you	a	dollar.

What	is	the	optimal	way	to	play	this	game?	As	usual,	drawing	a	payoff

matrix	helps:	
Matching	pennies	is	an	example	of	a	strictly	competitive	(or	zero	sum)	game.

In	the	prisoner’s	dilemma	and	stag	hunt,	the	players	had	incentive	to	cooperate
with	each	other	to	achieve	mutually	beneficial	outcomes.	Here,	however,	the
players	actively	want	to	see	the	other	perform	poorly;	player	1	wins	whatever
player	2	loses,	and	vice	versa.

Many	real	world	examples	fit	these	payoffs.	For	example,	on	a	soccer
penalty	kick,	a	kicker	can	kick	left	or	right;	the	goalkeeper	can	dive	left	or	right.
In	American	football,	the	offense	can	choose	a	running	play	or	passing	play;	the
defense	can	choose	to	protect	against	the	pass	or	the	run.	In	baseball,	a	pitcher
can	throw	a	fastball	or	a	curveball;	a	batter	can	guess	fastball	or	curveball.	In
war,	an	army	can	invade	one	of	two	cities;	the	defending	side	can	adequately
defend	only	one	of	them.	In	each	of	these	games,	one	player	is	happy	if	their
strategies	match,	while	the	other	player	prefers	a	mismatch.

Although	all	of	these	alternative	examples	are	pertinent,	let’s	stick	to	the
matching	pennies	framework.	Without	even	marking	the	best	responses,	clearly
no	pure	strategy	Nash	equilibria	exist	in	this	game.	Going	through	the	logic,
suppose	player	1	always	played	heads.	Then	player	2	should	play	tails,	since	that
will	win	her	a	dollar.	But	if	player	2	is	playing	tails	as	a	pure	strategy,	player	1
should	play	tails	as	well,	as	that	will	win	him	the	dollar.	But	given	that	player	1
is	playing	tails,	player	2	should	switch	over	to	heads.	Yet	if	player	2	is	playing
heads,	player	1	should	go	back	to	playing	heads.	The	process	now	begins	to
loop,	as	now	player	2’s	best	response	is	to	play	tails.	We	have	returned	to	our
starting	point.



If	we	analyzed	the	game	by	marking	best	responses,	we	would	wind	up	with

this:	
Unsurprisingly,	every	1	has	an	asterisk	and	every	-1	does	not.	No	outcome

has	an	asterisk	over	each	player’s	payoff,	meaning	no	mutual	best	response
exists	in	pure	strategies.	Therefore,	the	game	has	no	pure	strategy	Nash
equilibrium.

Does	that	mean	this	game	has	no	solution?	Not	nearly.	As	it	turns	out,	every
finite	game	has	at	least	one	Nash	equilibrium.	(John	Forbes	Nash,	of	A	Beautiful
Mind	fame,	proved	this	result,	which	is	why	we	call	this	Nash’s	theorem.	It	is
also	why	we	search	for	“Nash”	equilibria.)	A	game	is	finite	if	the	number	of
players	is	finite	and	the	number	of	pure	strategies	each	player	has	is	finite.	Here,
there	are	two	players,	and	each	player	has	two	pure	strategies.	Therefore,
matching	pennies	is	a	finite	game,	so	it	must	have	a	Nash	equilibrium.	We	know
matching	pennies	has	no	pure	strategy	Nash	equilibria,	so	it	must	have	a	Nash
equilibrium	in	mixed	strategies.
	



1.5.1:	What	Is	a	Mixed	Strategy?
Suppose	I	could	read	your	mind.	That	is,	as	you	were	deciding	whether	to

place	your	coin	with	heads	or	tails	showing,	I	could	perfectly	anticipate	what
you	were	about	to	do.	Is	there	any	way	you	could	minimize	your	losses?

The	easiest	solution	is	to	flip	the	coin	and	cover	it	with	your	hand	as	it	is
about	to	land	on	the	table.	If	you	did,	my	mind	reading	skills	would	be	rendered
harmless.	No	matter	what	I	chose,	my	net	expected	gain	from	playing	the	game
would	be	$0.	Put	differently,	if	I	guessed	heads	every	time,	I	would	win	$1	half
the	time	and	lose	$1	half	the	time,	for	an	average	of	$0.	Likewise,	if	I	guessed
tails	every	time,	I	would	win	$1	half	the	time	and	lose	$1	half	the	time,	again	for
an	average	of	$0.

Moreover,	if	I	flipped	my	coin	in	the	same	manner	you	do,	I	would	still	net
$0.	A	quarter	of	the	time	they	would	both	land	on	heads,	and	I	would	earn	$1.
Another	quarter	of	the	time	they	would	both	land	on	tails,	and	I	would	earn	$1.
In	yet	another	quarter	of	the	time,	mine	would	land	on	heads	and	yours	would
land	on	tails,	and	I	would	lose	$1.	In	the	final	quarter	of	the	time,	mine	would
land	on	tails	and	yours	would	land	on	heads,	and	I	would	again	lose	$1.	On
average,	all	of	these	cancel	out,	and	my	expected	value	of	the	game	is	equal	to
$0.

We	can	extend	this	further	and	say	that	any	probability	distribution	over
playing	heads	and	tails	would	net	me	$0	on	average	as	long	as	you	kept	flipping
your	coin.	For	example,	if	I	played	heads	1/3	of	the	time	and	tails	2/3	of	the
time,	I	would	earn	$0.	Likewise,	if	I	played	heads	7/16	of	the	time	and	tails	9/16
of	the	time,	I	would	still	be	stuck	earning	$0.	Effectively,	your	coin	flipping
strategy	is	unbeatable	and	unexploitable.

From	my	perspective,	if	I	cannot	beat	you,	then	I	might	as	well	flip	my	coin
also.	As	we	just	saw,	I	will	make	$0	from	this	game.	But	interestingly,	if	I	am
flipping	my	coin,	then	you	cannot	beat	me	for	the	same	reason	I	could	not	beat
you.	So	when	we	both	flip	our	coins,	neither	one	of	us	has	a	profitable	deviation
from	our	strategies.	Thus,	this	pair	of	coin	flipping	strategies	is	a	mixed	strategy
Nash	equilibrium.	The	“mixed	strategy”	part	of	the	term	refers	to	how	we	are
randomizing	over	multiple	strategies	rather	than	playing	a	single	“pure”	strategy.

Although	this	coin	flipping	strategy	is	neat,	it	will	not	take	us	very	far.
Consider	the	following	game:

This	game	is	very	similar	to	matching	pennies,	except	the	values	exchanged



differ	depending	on	the	outcome;	anywhere	from	0	or	3	points	changes	hands
depending	on	the	outcome.

There	are	no	pure	strategy	Nash	equilibria.	If	player	1	is	playing	up,	then
player	2	will	want	to	play	right	and	earn	2.	But	if	player	2	is	playing	right,	then
player	1	will	want	to	play	down	and	earn	0	instead	of	-2.	Yet	if	player	1	goes
down,	then	player	2	can	deviate	to	left	and	earn	1.	However,	that	causes	player	1
to	switch	to	up	and	earn	3.	Now	player	2	wants	to	go	right,	and	we	have	a	new
cycle.

We	can	see	this	with	the	best	responses	marked:

Matching	pennies	had	the	same	pattern,	with	no	outcome	being	a	mutual	best
response.

Since	no	pure	strategy	Nash	equilibria	exist,	there	must	be	an	equilibrium	in
mixed	strategies.	But	is	merely	flipping	a	coin	sufficient?	Unfortunately,	no.
Suppose	player	1	flipped	a	fair	coin	and	played	up	on	heads	and	down	on	tails.
Then	player	2’s	expected	utility	for	playing	left	is	a	weighted	combination	of	her
left	column	payoffs.	We	can	write	it	as	this:
	
EUleft	=	(.5)(-3)	+	(.5)(1)	=	-1
	

To	see	how	we	arrived	at	this	equation,	let’s	break	down	the	game	a	step
further.	We	know	that	player	1	is	playing	both	up	and	down	some	portion	of	the
time,	and	we	also	know	player	2	is	always	playing	left.	Since	we	only	want	to
calculate	player	2’s	payoff,	we	can	block	off	all	irrelevant	information	and	end
up	with	this:

Half	the	time,	or	(.5)	of	the	time,	player	1	plays	up,	and	player	2	earns	-3.
That	gives	us	the	(.5)(-3)	part	of	the	equation.	The	second	half	follows	similarly.
Half	the	time,	player	1	plays	down,	at	which	point	player	2	earns	1.	Thus,	we	get
the	(.5)(1)	part.	Summing	those	two	parts	together	yields	the	answer	of	-1.

Let’s	do	the	same	for	player	2	playing	right.	Blocking	out	the	irrelevant
information	gives	us	this:



Half	of	the	time,	she	earns	2.	The	other	half	of	the	time,	she	earns	0.	So	her
expected	utility	of	playing	right	in	response	to	player	1	flipping	a	coin	equals:
	
EUright	=	(.5)(2)	+	(.5)(0)	=	1
	

This	is	a	problem.	If	player	1	flips	a	coin,	player	2	ought	to	play	right	as	pure
strategy	since	it	generates	a	higher	expected	payoff	for	her.	Consequently,	player
2	would	not	want	to	randomize	between	left	and	right	in	response	to	player	1
flipping,	as	doing	so	feeds	her	more	of	the	negative	payoff	from	left	and	less	of
the	positive	payoff	from	right.

As	such,	player	2’s	best	response	is	to	play	right	as	a	pure	strategy.	But	if
she	plays	right,	we	already	know	player	1’s	best	response	is	to	play	down	as	a
pure	strategy.	Now	player	1	has	abandoned	his	mixture,	and	we	are	back	to
where	we	started,	as	the	players	cycle	around	their	pure	strategy	best	responses.
	



1.5.2:	The	Mixed	Strategy	Algorithm
Fortunately,	we	can	use	a	specific	algorithm	to	find	how	a	player	can	induce

his	or	her	opponent	to	be	indifferent	between	the	opponent’s	two	pure	strategies.
Unfortunately,	we	now	enter	the	computationally	intensive	part	of	game	theory.
Before,	all	we	had	to	do	was	compare	numbers	and	see	which	was	larger.	With
mixed	strategies,	we	have	to	introduce	unknown	variables	and	the	necessary
algebra	to	solve	for	them.

Let	the	lower	case	Greek	letter	sigma	(σ)	represent	the	probability	that	a
player	plays	a	particular	pure	strategy.	For	example,	we	use	σup	as	the	probability
player	1	plays	up.	Using	this	notation,	we	can	write	player	2’s	expected	utility	of
playing	left	as	a	pure	strategy	as	a	function	of	player	1’s	mixed	strategy:	EUleft	=
(σup)(-3)	+	(σdown)(1)	And	player	2’s	expected	utility	of	playing	right	as	a	pure
strategy	is:	EUright	=	(σup)(2)	+	(σdown)(0)	We	are	looking	for	a	mixed	strategy
from	player	1	that	leaves	player	2	indifferent	between	her	pure	strategies.	Put
differently,	we	want	to	find	a	σup	and	σdown	such	that:	EUleft	=	EUright	(σup)(-3)	+
(σdown)(1)	=	(σup)(2)	+	(σdown)(0)	Although	this	may	seem	like	a	difficult	task,	note
that	σup	and	σdown	must	sum	to	one.	That	is,	since	we	know	player	1	only	has	two
strategies,	he	must	play	down	whenever	he	does	not	play	up.	Therefore,	we	can
use	the	substitution	σdown	=	1	–	σup	to	rewrite	that	equation:	(σup)(-3)	+	(σdown)(1)
=	(σup)(2)	+	(σdown)(0)	σdown	=	1	–	σup	(σup)(-3)	+	(1	–	σup)(1)	=	(σup)(2)	+	(1	–	σup)
(0)	And	from	there,	all	we	need	to	do	is	solve	for	σup,	and	we	will	have	our
answer:	(σup)(-3)	+	(1	–	σup)(1)	=	(σup)(2)	+	(1	–	σup)(0)	-3σup	+	1	–	σup	=	2σup	1	–
4σup	=	2σup	6σup	=	1
σup	=	1/6
	

So	if	player	1	plays	up	with	probability	1/6	and	down	with	probability	5/6,
player	2	earns	the	same	payoff	for	selecting	either	left	or	right	as	a	pure	strategy.
Consequently,	she	also	receives	the	same	payoff	if	she	chooses	any	mixture
between	left	and	right.	This	is	important	because	player	2	also	has	to	play	a
mixed	strategy	in	the	Nash	equilibrium	of	this	game.

Knowing	that,	let’s	calculate	the	mixed	strategy	for	player	2	that	leaves
player	1	indifferent	between	his	two	pure	strategies.	First,	we	need	to	find	player
1’s	payoff	for	playing	up	as	a	function	of	player	2’s	mixed	strategy	σleft:	

With	probability	σleft,	player	1	earns	3;	with	probability	1	–	σleft,	he	earns	-2.



We	can	write	this	as:	EUup	=	(σleft)(3)	+	(1	–	σleft)(-2)	Now	we	move	to	player	1’s
payoff	for	playing	down	as	a	function	of	that	same	mixed	strategy	of	player	2’s:	

Player	1	earns	-1	with	probability	σleft	and	0	with	probability	1	–	σleft.	As	a
formula:	EUdown	=	(σleft)(-1)	+	(1	–	σleft)(0)	We	need	to	find	a	mixed	strategy	for
player	2	that	leaves	player	1	indifferent	between	his	pure	strategies.	To	do	this,
we	set	EUup	=	EUdown	and	solve	for	σleft:	EUup	=	EUdown	EUup	=	(σleft)(3)	+	(1	–
σleft)(-2)	EUdown	=	(σleft)(-1)	+	(1	–	σleft)(0)	(σleft)(3)	+	(1	–	σleft)(-2)	=	(σleft)(-1)	+	(1
–	σleft)(0)	3σleft	–	2	+	2σleft	=	-σleft	5σleft	–	2	=	-σleft	6σleft	=	2
σleft	=	1/3
	

So	if	player	2	plays	left	with	probability	1/3	and	right	with	probability	2/3,
player	1	is	indifferent	between	playing	up	and	down	as	pure	strategies.
Moreover,	he	is	indifferent	between	this	and	playing	any	mixture	between	up
and	down,	as	that	mixture	will	still	provide	him	the	same	payoff.

Connecting	the	mixed	strategies	of	both	players	together,	we	see	they	are	a
best	response	to	each	other	and	therefore	a	Nash	equilibrium.	That	is,	if	player	1
plays	up	with	probability	1/6	and	down	with	probability	5/6,	then	any	strategy	of
player	2’s	produces	the	same	payoff,	so	any	mixture	between	her	two	strategies
is	a	best	response.	This	includes	mixing	left	with	probability	1/3	and	down	with
probability	2/3.	Likewise,	if	player	2	plays	left	with	probability	1/3	and	right
with	probability	2/3,	any	strategy	of	player	1’s	generates	the	same	payoff,	so	any
mixture	between	his	two	strategies	is	a	best	response.	This	includes	mixing	up
with	probability	1/6	and	down	with	probability	5/6.	Since	neither	player	can
profitably	change	his	or	her	strategy,	those	mixtures	are	a	mixed	strategy	Nash
equilibrium.

	



1.5.3:	How	NOT	to	Write	a	Mixed	Strategy	Nash	Equilibrium
In	the	previous	game,	player	2	played	left	with	probability	1/3	and	right	with

probability	2/3.	If	we	solved	for	her	probability	of	playing	left	with	a	calculator,
we	would	see	something	along	the	lines	of	0.33333333.	Likewise,	the	calculator
would	generate	0.66666666	for	her	probability	of	playing	right.	Many	students
substitute	0.33	and	0.67	for	1/3	and	2/3.	But	are	0.33	and	0.67	technically
correct?

The	answer	is	no.	To	see	why,	suppose	player	2	played	left	with	probability
0.33	and	right	with	probability	0.67.	For	this	to	be	a	mixed	strategy	Nash
equilibrium,	player	1	must	be	indifferent	between	playing	up	and	down.
Knowing	that,	let’s	calculate	player	1’s	expected	utility	of	playing	up	and	his
expected	utility	of	playing	down.	We	will	begin	with	up:

If	he	plays	up,	he	earns	3	with	probability	0.33	and	-2	with	probability	0.67.
As	an	equation:

	
EUup	=	(0.33)(3)	+	(0.67)(-2)
EUup	=	0.99	–	1.34
EUup	=	-0.35
	

Now	let’s	find	his	expected	utility	if	he	plays	down:

This	time,	he	earns	-1	with	probability	0.33	and	0	with	probability	0.67.	As
an	equation:

	
EUdown	=	(0.33)(-1)	+	(0.67)(0)
EUdown	=	-0.33
	

It	should	be	apparent	why	this	is	not	a	Nash	equilibrium.	If	player	2	actually
played	left	with	probability	0.33	and	right	with	probability	0.67,	player	1’s	best
response	is	to	play	down	as	a	pure	strategy,	as	-0.33	is	greater	than	-0.35.	The
margin	is	slight,	but	down	is	better	nonetheless.	To	induce	indifference,	the
probabilities	must	be	exactly	1/3	and	exactly	2/3.	Although	0.33	may	seem
innocuously	different	from	1/3,	anything	even	slightly	more	or	slightly	less	than
1/3	breaks	this	all-important	indifference.



Fortunately,	there	is	a	simple	way	to	avoid	this	problem:	write	all	of	your
answers	as	fractions.	Decimals	lose	the	precision	necessary	for	game	theoretical
calculations,	but	fractions	always	work	perfectly.	If	you	get	into	the	habit	of
using	fractions	exclusively,	you	will	not	lose	points	on	an	exam	on	such	a
technicality.
	



1.5.4:	Mixed	Strategies	in	the	Stag	Hunt
Some	games	have	both	pure	strategy	Nash	equilibria	and	mixed	strategy

Nash	equilibria.	The	stag	hunt	from	two	lessons	ago	is	one	such	game.	Recall
that	both	<stag,	stag>	and	<hare,	hare>	are	PSNE.	However,	a	MSNE	also	exists
in	which	both	players	mix	between	stag	and	hare.	We	can	use	the	same
algorithm	from	before	to	solve	for	it.

To	differentiate	between	the	players’	strategies	and	for	ease	of	exposition,
let’s	replace	the	names	of	the	players’	strategies	with	up,	down,	left,	and	right	to

give	us	this	game:	
We	start	by	finding	player	2’s	expected	utility	for	playing	left	as	a	pure

strategy	as	a	function	of	player	1’s	mixed	strategy	σup:	
So	with	probability	σup,	player	2	earns	3.	With	complementary	probability,

she	earns	0.	As	an	equation:	EUleft	=	(σup)(3)	+	(1	–	σup)(0)	Now	we	go	to	player
2’s	expected	utility	for	playing	right	as	a	pure	strategy	as	a	function	of	that	same

mixed	strategy	σup:	
Here,	player	2	earns	2	with	probability	σup	and	1	with	probability	1	–	σup.

Again,	to	write	that	as	an	equation:	EUright	=	(σup)(2)	+	(1	–	σup)(1)	To	induce
player	2’s	indifference,	we	set	her	expected	utility	for	playing	left	equal	to	her
expected	utility	for	playing	right	and	solve	for	σup:	EUleft	=	EUright	EUleft	=	(σup)(3)
+	(1	–	σup)(0)	EUright	=	(σup)(2)	+	(1	–	σup)(1)	(σup)(3)	+	(1	–	σup)(0)	=	(σup)(2)	+	(1
–	σup)(1)	3σup	=	2σup	+	1	–	σup	3σup	=	σup	+	1
2σup	=	1
σup	=	1/2
	

So	if	player	1	plays	up	and	down	each	with	probability	1/2,	player	2	is
indifferent	between	all	combinations	of	left	and	right.

To	complete	the	MSNE,	we	have	to	see	what	mixed	strategy	for	player	2
leaves	player	1	indifferent	between	his	pure	strategies.	The	process	is	the	same,



so	we	begin	by	looking	at	player	1’s	expected	utility	for	playing	up	as	a	pure
strategy	as	a	function	of	player	2’s	mixed	strategy	σleft:	

He	earns	3	with	probability	σleft	and	0	with	probability	1	–	σleft,	or:	EUup	=

(σleft)(3)	+	(1	–	σleft)(0)	Now	for	down:	
Here,	he	earns	2	with	probability	σleft	and	1	with	probability	1	–	σleft,	or:

EUdown	=	(σleft)(2)	+	(1	–	σleft)(1)	Combining	these	together	yields	the	following:
EUup	=	EUdown	EUup	=	(σleft)(3)	+	(1	–	σleft)(0)	EUdown	=	(σleft)(2)	+	(1	–	σleft)(1)
(σleft)(3)	+	(1	–	σleft)(0)	=	(σleft)(2)	+	(1	–	σleft)(1)	3σleft	=	2σleft	+	1	–	σleft	3σleft	=	σleft
+	1
2σleft	=	1
σleft	=	1/2
	

Thus,	player	2	plays	left	and	right	each	with	probability	1/2	in	the	MSNE.
	



1.5.5:	How	Changing	Payoffs	Affects	Mixed	Strategy	Nash	Equilibria
When	we	solved	the	prisoner’s	dilemma,	we	saw	that	changing	the	payoffs

did	not	matter	much.	Indeed,	as	long	as	the	order	of	the	numbers	stayed	the	same
—that	is,	we	replaced	the	largest	number	from	the	first	set	of	payoffs	with	the
largest	number	from	the	second	set	of	payoffs,	we	replaced	the	second	largest
number	from	the	first	set	of	payoffs	with	the	second	largest	number	from	the
second	set	of	payoffs,	and	so	forth—the	equilibrium	did	not	change.	Regardless
of	the	individual	values,	as	long	as	the	order	of	the	numbers	remained	the	same,
confessing	still	strictly	dominated	keeping	quiet,	and	thus	<confess,	confess>
was	the	unique	pure	strategy	Nash	equilibrium	of	the	game.

Mixed	strategy	Nash	equilibrium	is	shakier.	Although	the	MSNE	will	still
exist	as	long	as	the	order	remains	the	same,	even	slight	perturbations	in	relative
values	alters	the	exact	probability	distributions	found	in	the	MSNE.

To	see	this	in	action,	let’s	look	at	a	slightly	altered	stag	hunt	game:	

Let’s	solve	for	player	1’s	mixed	strategy.	As	before,	this	requires	us	to
define	player	2’s	expected	utility	for	each	of	her	pure	strategies	as	a	function	of
player	1’s	mixed	strategy	σup.	Let’s	begin	with	her	expected	utility	for	left	as	a

pure	strategy:	
Player	2	receives	4	with	probability	σup	and	0	with	probability	1	–	σup.

Therefore,	her	expected	utility	is:	EUleft	=	(σup)(4)	+	(1	–	σup)(0)	And	now	for

player	2’s	expected	utility	for	right:	
This	time,	she	earns	2	with	probability	σup	and	1	with	probability	1	–	σup.	We

can	write	this	as:	EUright	=	(σup)(2)	+	(1	–	σup)(1)	Note	that	the	expected	utility	for
playing	right	remained	the	same,	but	the	expected	utility	for	left	changed.	As
such,	when	we	go	through	the	last	step	of	the	process	(setting	EUleft	equal	to
EUright	and	solving	for	σup),	we	should	expect	a	different	mixed	strategy.	Sure
enough,	this	is	true:	EUleft	=	EUright	EUleft	=	(σup)(4)	+	(1	–	σup)(0)	EUright	=	(σup)(2)



+	(1	–	σup)(1)	(σup)(4)	+	(1	–	σup)(0)	=	(σup)(2)	+	(1	–	σup)(1)	4σup	=	2σup	+	1	–	σup
4σup	=	σup	+	1
3σup	=	1
σup	=	1/3
	

So	player	1	plays	up	with	probability	1/3	and	down	with	probability	2/3	in
the	MSNE.	The	same	steps	will	also	show	that	player	2	makes	the	same	change,
now	mixing	left	with	probability	1/3	and	right	with	probability	2/3.	These
mixtures	are	different	from	when	the	<stag,	stag>	outcome	was	worth	3	for	each
player.	Consequently,	we	must	recalculate	mixed	strategy	Nash	equilibria	every
time	a	payoff	changes.
	



1.5.6:	Invalid	Mixed	Strategies
Not	all	games	have	a	mixed	strategy	Nash	equilibrium.	Deadlock,	for

example,	does	not.	To	see	this,	let’s	try	to	use	the	algorithm	to	solve	for	an
imaginary	MSNE	of	the	game.	Recall	that	deadlock	looked	like	this:	

Let’s	find	the	mixed	strategy	for	player	2	that	leaves	player	1	indifferent
between	his	pure	strategies.	We	begin	by	isolating	player	1’s	payoffs	if	he	plays

up	as	a	pure	strategy:	
If	player	2	plays	σleft	as	her	mixed	strategy	and	player	1	plays	up	as	a	pure

strategy,	he	earns	3	with	probability	σleft	and	4	with	probability	1	–	σleft.	As	an
equation:	EUup	=	(σleft)(3)	+	(1	–	σleft)(4)	Now	consider	player	1	selecting	down

as	a	pure	strategy:	
This	time,	he	earns	1	with	probability	σleft	and	2	with	probability	1	–	σleft.	We

write	this	as:	EUdown	=	(σleft)(1)	+	(1	–	σleft)(2)	Let’s	attempt	to	set	EUup	equal	to
EUdown	and	solve	for	σleft:	EUup	=	EUdown	EUup	=	(σleft)(3)	+	(1	–	σleft)(4)	EUdown	=
(σleft)(1)	+	(1	–	σleft)(2)	(σleft)(3)	+	(1	–	σleft)(4)	=	(σleft)(1)	+	(1	–	σleft)(2)	3σleft	+	4	–
4σleft	=	σleft	+	2	–	2σleft	-σleft	+	4	=	-σleft	+	2
2	=	0
	

In	the	process	of	solving	for	the	mixed	strategy,	we	eliminated	σleft	from	the
equation	in	the	last	step	and	made	the	bold	mathematical	claim	that	2	=	0.	This	is
an	absurd	statement.	Essentially,	our	algorithm	is	telling	us	that	no	mixed
strategy	that	can	make	this	work.	Thus,	we	can	safely	conclude	that	player	2
cannot	mix	in	a	way	that	leaves	player	1	indifferent.	The	same	steps	would	also
show	that	player	1	cannot	mix	in	a	manner	that	leaves	player	2	indifferent.	As	a
result,	no	MSNE	exists.

Other	things	can	go	wrong	when	we	try	running	the	mixed	strategy
algorithm.	Recall	that	the	original	prisoner’s	dilemma	had	the	following	payoff



matrix:	
Let’s	solve	for	player	1’s	mixed	strategy.	We	begin	by	isolating	player	2’s

payoffs	for	playing	left	(quiet):	
If	player	2	selects	left	as	a	pure	strategy,	she	earns	-1	with	probability	σup	and

-12	with	probability	1	–	σup.	Thus,	her	expected	utility	equals:	EUleft	=	(σup)(-1)	+
(1	–	σup)(-12)	Now	isolate	player	2’s	payoffs	for	playing	right	(confess):	

Here,	she	earns	0	with	probability	σup	and	-8	with	probability	1	–	σup.	So	her
expected	utility	equals:	EUright	=	(σup)(0)	+	(1	–	σup)(-8)	Let’s	try	to	solve	for	the
mixed	strategy	that	induces	indifference:	EUleft	=	EUright	EUleft	=	(σup)(-1)	+	(1	–
σup)(-12)	EUright	=	(σup)(0)	+	(1	–	σup)(-8)	(σup)(-1)	+	(1	–	σup)(-12)	=	(σup)(0)	+	(1
–	σup)(-8)	-σup	–	12	+	12σup	=	-8	+	8σup	-12	+	11σup	=	-8	+	8σup	3σup	=	4
σup	=	4/3
	

Player	1	is	supposed	to	play	up	with	probability	4/3.	We	know	that	the
probability	he	plays	up	is	therefore	1	–	4/3,	or	-1/3.	As	such,	he	plays	up	with	a
probability	greater	than	100%	and	down	a	negative	percentage	of	the	time.
Neither	one	of	these	things	is	sensible;	all	probabilities	must	fall	between	0	and
1.	Once	more,	this	is	our	algorithm’s	way	of	telling	us	that	no	such	MSNE
exists.

These	two	examples	demonstrate	when	players	cannot	make	their	opponents
indifferent.	Unfortunately,	if	we	show	that	one	player	cannot	mix	in	such	a
manner,	we	still	cannot	eliminate	the	possibility	that	no	MSNE	exists.	In
particular,	there	are	games	where	one	player	plays	a	pure	strategy	while	the	other
mixes.	Some	differentiate	these	as	“partially	mixed	strategy	Nash	equilibria”
because	one	player	mixes	and	the	other	does	not.	Regardless,	they	still	fall	under
the	umbrella	of	MSNE.	We	will	look	at	such	games	in	Lesson	1.8.
	



1.5.7:	Mixing	and	Dominance
Both	the	prisoner’s	dilemma	and	deadlock	have	a	strictly	dominated

strategy.	In	addition,	neither	has	a	mixed	strategy	Nash	equilibrium.	Is	this	a
coincidence?

Most	certainly	not:	a	strictly	dominated	strategy	cannot	be	played	with
positive	probability	in	a	MSNE.	Thinking	about	how	mixed	strategy	Nash
equilibria	work	reveals	why.	A	requirement	of	Nash	equilibrium	is	that	no	player
has	a	profitable	deviation	from	the	strategies	being	played.	So	imagine	that	a
player	used	a	strictly	dominated	strategy	as	a	part	of	a	mixed	strategy.	Then
some	percentage	of	the	time	he	ends	up	in	an	outcome	which	is	strictly	worse
than	if	he	had	used	the	strictly	dominating	strategy	as	a	part	of	the	mixed
strategy	instead.	That	implies	that	he	can	improve	his	payoff	by	playing	the
strictly	dominating	strategy	whatever	percentage	of	the	time	he	would	otherwise
play	the	strictly	dominated	strategy.	Thus,	he	has	a	profitable	deviation
whenever	he	plays	the	strictly	dominated	strategy.

To	see	how	this	operates,	let’s	use	the	prisoner’s	dilemma	as	an	example.
Suppose	player	1	could	mix	in	equilibrium.	Then	some	percentage	of	the	time,
he	keeps	quiet.	If	player	2	plays	keep	quiet	as	a	pure	strategy,	player	1	would
regret	playing	keep	quiet	whenever	his	mixture	told	him	to	do	so,	as	he	could
have	played	confess	and	spent	less	time	in	jail.	Likewise,	if	player	2	plays
confess	as	a	pure	strategy,	player	1	would	again	regret	playing	keep	quiet
whenever	his	mixture	told	him	to	do	so	for	the	same	reason.

The	logic	is	a	little	more	complicated	if	player	2	were	mixing.	Suppose
player	1	gets	out	his	randomizing	device,	and	it	tells	him	to	keep	quiet.	Given
that,	he	knows	player	2	confesses	with	probability	σconfess	and	keeps	quiet	with
probability	1	–	σconfess,	but	he	still	does	not	know	which	until	he	actually	reveals
his	choice	to	her.	However,	regardless	of	what	she	ends	up	selecting,	player	1
could	perform	better	by	confessing.	That	is,	for	the	σconfess	amount	of	time,	he
would	rather	confess,	and	for	the	1	–	σconfess,	he	would	still	rather	confess.	The
bottom	line	is	that	it	makes	no	sense	for	him	to	play	the	strictly	dominated
strategy	in	a	mixed	strategy,	so	he	does	not.

Weakly	dominated	strategies	remain	finicky,	however.	They	can	be	played
in	a	MSNE.	We	will	see	such	a	case	in	Lesson	1.8.

	



Takeaway	Points
1)	Nash’s	theorem	states	that	every	finite	game	has	at	least	one	Nash
equilibrium.
2)	The	mixed	strategy	algorithm	derives	mixed	strategy	Nash	equilibria	by
finding	the	particular	mixed	strategies	that	leave	the	other	player	indifferent
between	his	or	her	two	pure	strategies.
3)	Expressing	mixed	strategies	in	fractions	is	more	accurate	than	expressing
them	in	decimals.
4)	Players	cannot	mix	using	strictly	dominated	strategies	in	equilibrium.



Lesson	1.6:	Calculating	Payoffs
When	players	play	pure	strategy	Nash	equilibria,	their	payoffs	are	obvious.

However,	in	a	mixed	strategy	Nash	equilibrium,	we	cannot	simply	look	at	an
outcome	and	read	a	number	to	find	a	player’s	expected	utility.	This	lesson	shows
how	to	calculate	payoffs	in	MSNE	using	three	commonly	seen	games:	chicken,
battle	of	the	sexes,	and	pure	coordination.
	



1.6.1:	Chicken
Two	testosterone—fueled	teenagers	are	on	opposite	ends	of	a	one	lane	street

and	begin	driving	full	speed	toward	one	another.	At	the	last	possible	moment,
they	must	decide	whether	to	swerve	or	continue	going	straight.	If	one	continues
while	the	other	swerves,	the	one	who	swerves	is	a	“chicken”	while	the	other	has
proven	his	or	her	bravery.	If	both	swerve,	then	neither	can	claim	superiority.	But
if	both	continue,	they	crash	straight	into	each	other	in	an	epic	conflagration,
which	is	the	worst	possible	outcome	for	both	players.

Although	these	teenagers’	preferences	may	seem	strange	to	us,	we	can	still
analyze	their	optimal	behavior	(from	their	perspectives)	using	the	following

utilities	over	outcomes:	
“Snowdrift”	is	an	alternative	title	for	this	game.	Under	that	framework,	two

drivers	are	stuck	on	the	opposite	ends	of	a	snowy	road,	and	they	simultaneously
decide	whether	to	stay	in	their	cars	or	shovel	a	passageway.	An	individual’s
most	preferred	outcome	is	to	sit	in	his	or	her	car	while	the	other	player	shovels.
That	individual’s	next	best	outcome	is	for	both	players	to	shovel.	The	third	best
outcome	is	for	that	player	to	do	the	shoveling	while	the	other	stays	inside.	The
worst	outcome	is	for	both	players	to	stay	in	their	cars,	as	the	road	never	clears.

We	will	stick	to	chicken	because	it	allows	for	the	possibility	of	a	fiery
explosion	and	does	not	involve	any	depressing	wintery	weather.	This	game	has
two	pure	strategy	Nash	equilibria:	<continue,	swerve>	and	<swerve,	continue>.
Let’s	verify	this	by	marking	each	player’s	best	responses,	beginning	with	how

player	1	should	respond	to	player	2	continuing:	
Although	both	outcomes	are	undesirable	to	player	1,	swerving	minimizes	his

losses,	so	it	earns	the	asterisk.

Next,	suppose	player	2	swerved:	
Player	2	swerving	opens	up	better	outcomes	for	player	1.	However,

continuing	is	better	than	swerving	here,	meaning	that	player	1	wants	to	condition
his	behavior	on	how	player	2	acts.



The	same	is	true	for	player	2.	First,	suppose	player	1	continued:	

Then	player	2	wants	to	swerve.	But	if	he	swerves:	

Then	she	wants	to	continue.	Hence,	this	is	a	game	of	mixed	motives.	Both
players	want	to	continue	and	force	the	other	player	to	swerve.	But	if	neither
backs	down,	the	game	ends	in	disaster.	If	one	can	convince	the	other	to	back

down,	the	game	reaches	a	Nash	equilibrium:	
That	is,	<continue,	swerve>	and	<swerve,	continue>	are	pure	strategy	Nash

equilibria	since	both	players’	payoffs	have	stars	in	those	boxes.
However,	each	player	cannot	credibly	threaten	to	continue	if	he	or	she

knows	the	other	will	continue	as	well,	as	that	leads	to	the	disastrous	<continue,
continue>	outcome.	So	perhaps	a	MSNE	exists	as	well.	To	find	out,	let’s	begin
by	renaming	the	strategies	as	directions	to	distinguish	between	each	player’s

moves:	
First,	let’s	solve	for	player	1’s	mixed	strategy.	Recall	that	we	need	to	find

player	2’s	payoffs	for	each	of	her	pure	strategies	as	a	function	of	player	1’s
mixture.

Player	2	earns	-10	with	probability	σup	and	2	with	probability	1	–	σup.
Therefore,	her	expected	utility	for	left	equals:	EUleft	=	(σup)(-10)	+	(1	–	σup)(2)

Now	for	right:	



Here,	player	2	earns	-2	with	probability	σup	and	0	with	probability	1	–	σup,	or:
EUright	=	(σup)(-2)	+	(1	–	σup)(0)	Setting	these	two	expected	utilities	equal	to	each
other	allows	us	to	solve	for	player	1’s	mixed	strategy	that	leaves	player	2
indifferent:	EUleft	=	EUright	EUleft	=	(σup)(-10)	+	(1	–	σup)(2)	EUright	=	(σup)(-2)	+	(1
–	σup)(0)	(σup)(-10)	+	(1	–	σup)(2)	=	(σup)(-2)	+	(1	–	σup)(0)	-10σup	+	2	–	2σup	=
-2σup	-12σup	+	2	=	-2σup	10σup	=	2
σup	=	1/5
	

So	player	1	goes	up	(continues)	with	probability	1/5	and	goes	down
(swerves)	with	probability	4/5.

Using	the	same	process	for	player	2’s	mixed	strategy,	we	find	an	identical
result.	We	begin	with	up	as	a	pure	strategy	for	player	1:	

So	with	probability	σleft,	player	1	earns	-10,	and	with	probability	1	–	σleft,	he
earns	2.	As	an	equation:	EUup	=	(σleft)(-10)	+	(1	–	σleft)(2)	For	down:	

Now	he	receives	-2	with	probability	σleft	and	0	with	probability	1	–	σleft.	We
can	write	this	as:	EUdown	=	(σleft)(-2)	+	(1	–	σleft)(0)	Setting	player	1’s	expected
utility	for	up	equal	to	his	expected	utility	for	down	and	solving	for	σleft	yields:
EUup	=	EUdown	EUup	=	(σleft)(-10)	+	(1	–	σleft)(2)	EUdown	=	(σleft)(-2)	+	(1	–	σleft)(0)
(σleft)(-10)	+	(1	–	σleft)(2)	=	(σleft)(-2)	+	(1	–	σleft)(0)	-10σleft	+	2	–	2σleft	=	-2σleft
-12σleft	+	2	=	-2σleft	10σleft	=	2
σleft	=	1/5
	

So	in	the	MSNE,	both	players	continue	to	drive	straight	with	probability	1/5
and	swerve	with	probability	4/5.

A	natural	question	to	ask	is	how	the	expected	outcome	of	the	MSNE
compares	to	the	outcomes	in	the	PSNE.	We	can	readily	identify	the	value	of	the
PSNE	outcomes,	since	the	payoff	matrix	explicitly	tells	us	that	the	player	who
swerves	gets	-2	and	the	player	who	goes	straight	gets	2.	However,	all	the
outcomes	occur	with	positive	probability	in	the	MSNE,	which	complicates
matters.	Indeed,	we	have	to	manually	calculate	these	payoffs.

Fortunately,	the	process	is	easy.	We	simply	take	the	probability	that	each



outcome	occurs	in	equilibrium	and	multiply	it	by	the	player’s	expected	utility	for
that	outcome.	Let’s	isolate	all	of	player	1’s	payoffs:	

We	know	that	player	1	plays	up	with	probability	1/5	and	player	2	plays	left
with	probability	1/5.	So	the	probability	player	1	earns	his	<continue,	continue>
payoff	of	-10	is	simply	the	product	of	1/5	and	1/5.	Likewise,	since	he	plays
down	with	probability	4/5,	the	probability	he	earns	his	<swerve,	continue>
payoff	of	-2	is	the	product	of	1/5	and	4/5.	The	probability	<swerve,	continue>
occurs	in	the	MSNE	is	the	product	of	4/5	and	1/5,	so	he	earns	2	times	that
probability.	Finally,	the	probability	he	earns	0	from	the	<swerve,	swerve>
outcome	is	the	product	of	4/5	and	4/5.

Player	1’s	expected	utility	is	simply	the	sum	of	all	of	these	products	times
the	payoffs.	In	an	equation	form,	solving	for	player	1’s	expected	utility	is
routine:	EU1	=	(1/5)(1/5)(-10)	+	(4/5)(1/5)(-2)	+	(1/5)(4/5)(2)	+	(4/5)(4/5)(0)	EU1

=	(1/25)(-10)	+	(4/25)(-2)	+	(4/25)(2)	+	(16/25)(0)	EU1	=	-10/25	–	8/25	+	8/25	+
0
EU1	=	-10/25
EU1	=	-2/5
	

So	in	the	MSNE,	player	1	expects	to	earn	-2/5	on	average.	Note	that	he	will
not	actually	earn	-2/5	when	they	play—he	will	either	earn	-10,	-2,	0,	or	2.	But	his
average	outcome	is	-2/5.	This	is	similar	to	what	you	expect	when	you	play	a
game	like	blackjack	at	a	casino.	You	expect	to	lose	a	few	cents	per	dollar	you
spend	at	the	table,	but	on	any	given	hand	you	either	lose	your	entire	bet	or
double	it	(or	more	if	you	hit	a	blackjack).	Although	no	single	outcome	exists	that
ends	with	you	receiving	$0.98	or	so	of	your	original	$1,	it	is	nevertheless	correct
to	say	that	$0.98	is	your	average	outcome.	When	we	find	expected	utilities	of
MSNE,	we	define	the	expectations	analogously.

Player	2	has	the	same	expected	utility.	We	compute	this	the	same	way,

beginning	by	isolating	her	payoffs:	
The	probability	each	outcome	occurs	in	equilibrium	is	the	same	as	before.

As	such,	calculating	the	expected	utility	is	just	a	matter	of	compiling	these



payoffs	and	their	probabilities	and	then	summing	them	together:	EU2	=	(1/5)
(1/5)(-10)	+	(1/5)(4/5)(2)	+	(4/5)(1/5)(-2)	+	(4/5)(4/5)(0)	EU2	=	(1/25)(-10)	+
(4/25)(2)	+	(4/25)(-2)	+	(16/25)(0)	EU2	=	-10/25	+	8/25	–	8/25	+	0
EU2	=	-10/25
EU2	=	-2/5
	

As	claimed,	player	2’s	payoff	is	-2/5,	just	like	player	1’s.
Now	that	we	know	each	player’s	expected	utility	in	the	MSNE,	we	can	see

the	<swerve,	swerve>	outcome	leaves	both	players	better	off,	as	0	is	greater	than
-2/5.	However,	as	we	saw	with	the	prisoner’s	dilemma,	such	an	outcome	is
inherently	unstable,	as	one	of	the	players	could	profitably	deviate	to	continuing.

	



1.6.2:	Battle	of	the	Sexes
A	man	and	a	woman	want	to	go	on	a	date	on	a	Friday	evening	in	the	1980s.

There	are	only	two	venues	of	entertainment	in	the	city	that	night:	a	ballet	and	a
fight.	The	woman	wants	to	see	the	ballet.	The	man	wants	to	see	the	fight.
However,	they	both	prefer	being	together	than	being	alone,	as	they	will	have	to
go	home	immediately	if	the	other	does	not	show	up	at	the	location	they	choose.
A	simple	cell	phone	call,	text	message,	or	email	would	simplify	the	coordination
process,	but	the	1980s	lacked	those	luxuries.	As	such,	both	must	choose	where	to
go	simultaneously	and	without	the	ability	to	communicate	with	one	another.

An	alternative	framework	for	this	game	pits	two	people	deciding	whether	to
go	to	a	Johann	Sebastian	Bach	or	Igor	Stravinsky	concert,	but	the	central
concepts	and	payoffs	are	the	same.	We	can	draw	up	the	payoff	matrix	like	this:	

Marking	best	responses	to	check	for	pure	strategy	Nash	equilibrium	is
overkill	here.	If	both	go	to	the	ballet,	then	neither	has	a	profitable	deviation,	as
they	would	become	separated	and	earn	0	rather	than	some	positive	amount.	So
<ballet,	ballet>	is	a	Nash	equilibrium.	Likewise,	if	both	go	to	the	fight,	then	any
deviation	moves	a	player’s	payoff	from	a	positive	value	to	0,	so	<fight,	fight>	is
also	a	Nash	equilibrium.	Meanwhile,	<ballet,	fight>	and	<fight,	ballet>	are	not
Nash	equilibria,	as	each	player	would	rather	go	to	wherever	his	or	her	date	is
than	stick	to	his	or	her	current	strategy.

If	we	check	for	MSNE,	we	see	one	exists	for	this	game.	As	always,	to	make
things	convenient,	let’s	rename	the	strategies	according	to	directions:	

We	will	solve	for	player	1’s	mixed	strategy	first,	meaning	we	need	isolate

player	2’s	payoffs	if	she	moves	left:	
So	she	earns	2	with	probability	σup	and	0	with	probability	1	–	σup.	As	an

equation:	EUleft	=	(σup)(2)	+	(1	–	σup)(0)	Now	consider	her	expected	utility	for



playing	right	as	a	pure	strategy:	
Here,	she	earns	0	with	probability	σup	and	1	with	probability	1	–	σup.	Once

again,	as	an	equation:	EUright	=	(σup)(0)	+	(1	–	σup)(1)	To	find	player	1’s	mixed
strategy	that	makes	player	2	indifferent,	we	set	her	expected	utility	for	left	equal
to	her	expected	utility	for	right	and	solve	for	σup:	EUleft	=	EUright	EUleft	=	(σup)(2)
+	(1	–	σup)(0)	EUright	=	(σup)(0)	+	(1	–	σup)(1)	(σup)(2)	+	(1	–	σup)(0)	=	(σup)(0)	+	(1
–	σup)(1)	2σup	=	1	–	σup	3σup	=	1
σup	=	1/3
	

So	in	the	MSNE,	player	1	goes	to	the	ballet	(up)	with	probability	1/3	and	to
the	fight	(down)	with	probability	2/3.

Switching	gears,	let’s	solve	for	player	2’s	mixed	strategy.	To	begin,	consider
player	1’s	payoffs	for	playing	up	as	a	function	of	that	mixed	strategy:	

From	this,	we	see	that	player	1	earns	1	with	probability	σleft	and	0	with
probability	1	–	σleft.	So	his	expected	utility	for	moving	up	equals:	EUup	=	(σleft)(1)
+	(1	–	σleft)(0)	Now	consider	player	1’s	payoffs	for	down:	

This	time	it	is	0	with	probability	σleft	and	2	with	probability	1	–	σleft,	or:
EUdown	=	(σleft)(0)	+	(1	–	σleft)(2)	Finally,	we	set	his	expected	utility	for	up	equal
to	his	expected	utility	for	down	and	solve	for	σleft:	EUup	=	EUdown	EUup	=	(σleft)(1)
+	(1	–	σleft)(0)	EUdown	=	(σleft)(0)	+	(1	–	σleft)(2)	(σleft)(1)	+	(1	–	σleft)(0)	=	(σleft)(0)
+	(1	–	σleft)(2)	σleft	=	2	–	2σleft	3σleft	=	2
σleft	=	2/3
	

So	player	2	goes	to	the	ballet	(left)	with	probability	2/3	and	the	fight	(right)
with	probability	1/3.

In	summary,	each	player	goes	to	his	or	her	preferred	form	of	entertainment
with	probability	2/3	and	his	or	her	lesser	preferred	form	of	entertainment	with
probability	1/3.	But	these	probabilities	do	not	tell	us	about	the	efficiency	of	the



MSNE.	To	find	out,	we	must	calculate	their	expected	utilities	in	the	MSNE.
Let’s	isolate	player	1’s	payoffs	for	each	outcome:	

The	<up,	right>	outcome	occurs	with	probability	1/3	times	2/3.	The	<down,
left>	outcome	occurs	with	probability	2/3	times	2/3.	The	<up,	right>	outcome
occurs	with	probability	1/3	times	1/3.	Finally,	the	<down,	right>	outcome	occurs
with	probability	2/3	times	1/3.	Multiplying	these	probabilities	by	their	respective
payoffs	and	then	summing	all	of	those	payoffs	together	gives	us	the	following:
EU1	=	(1/3)(2/3)(1)	+	(2/3)(2/3)(0)	+	(1/3)(1/3)(0)	+	(2/3)(1/3)(2)	EU1	=	(2/9)(1)
+	(4/9)(0)	+	(1/9)(0)	+	(2/9)(2)	EU1	=	2/9	+	4/9
EU1	=	6/9
EU1	=	2/3
	

So	player	1	earns	a	lowly	2/3	in	the	MSNE.
The	same	process	reveals	that	player	2	earns	2/3	as	well:	

Since	the	probabilities	of	each	outcome	remain	the	same,	it	is	a	simple
matter	of	compiling	the	probabilities	and	payoffs:	EU1	=	(1/3)(2/3)(2)	+	(2/3)
(2/3)(0)	+	(1/3)(1/3)(0)	+	(2/3)(1/3)(1)	EU1	=	(2/9)(2)	+	(4/9)(0)	+	(1/9)(0)	+
(2/9)(1)	EU1	=	4/9	+	2/9
EU1	=	6/9
EU1	=	2/3
	

Why	is	the	mixed	strategy	Nash	equilibrium	so	bizarre?	Both	the	<ballet,
fight>	and	<fight,	ballet>	outcomes	represent	coordination	failure.	They	both
occur	with	positive	probability	in	the	MSNE,	accounting	for	5/9	of	the
outcomes.	That	means	the	couple	go	on	their	date	less	than	half	of	the	time	if
they	mix,	which	drags	down	their	payoffs.	Indeed,	each	would	be	better	off
agreeing	to	meet	at	their	lesser	preferred	form	of	entertainment;	the	1	they	earn
from	that	outcome	beats	the	2/3	they	earn	in	the	MSNE.	Consequently,	the
MSNE	is	a	rational	but	strange	set	of	strategies.	In	turn,	if	players	ever	played



the	MSNE,	we	might	wonder	why	they	could	not	simply	coordinate	on	one	of
the	PSNE.
	



1.6.3:	Pure	Coordination
Mixed	strategies	can	be	even	stranger	in	this	regard.	Consider	the	following

game:	
We	call	this	pure	coordination.	The	players	had	mixed	motives	in	battle	of

the	sexes;	they	wanted	to	be	together,	but	they	also	wanted	to	see	their	preferred
form	of	entertainment.	In	pure	coordination,	they	only	care	about	being	together.
One	simple	interpretation	of	this	is	choosing	which	side	of	the	street	to	drive	on.
It	does	not	really	matter	whether	we	all	drive	on	the	left	side	or	all	drive	on	the
right	side,	as	long	as	some	of	us	do	not	drive	on	the	left	while	others	drive	on	the
right.

Obviously,	<up,	left>	and	<down,	right>	are	PSNE;	any	deviation	from
these	sets	of	strategies	changes	a	player’s	payoff	from	1	to	0.	However,	a	MSNE
also	exists.	To	solve	for	it,	first	consider	player	2’s	payoffs	for	left	as	a	function

of	player	1’s	mixed	strategy	σup:	
She	earns	1	with	probability	σup	and	0	with	probability	1	–	σup.	In	expected

utility	form:	EUleft	=	(σup)(1)	+	(1	–	σup)(0)	Now	for	right:	
This	time,	she	earns	0	with	probability	σup	and	1	with	probability	1	–	σup.	Or:

EUright	=	(σup)(0)	+	(1	–	σup)(1)	Putting	these	together,	we	solve	for	σup:	EUleft	=
EUright	EUleft	=	(σup)(1)	+	(1	–	σup)(0)	EUright	=	(σup)(0)	+	(1	–	σup)(1)	(σup)(1)	+	(1
–	σup)(0)	=	(σup)(0)	+	(1	–	σup)(1)	σup	=	1	–	σup	2σup	=	1
σup	=	1/2
	

So	she	mixes	equally	between	left	and	right.	Player	1	does	the	same	with	up
and	down.	We	can	see	this	by	starting	with	his	expected	utility	for	up	as	a

function	of	σleft:	
Similar	to	what	we	saw	with	player	2,	player	1	earns	1	with	probability	σleft



and	0	with	probability	1	–	σleft.	We	can	write	this	as:	EUup	=	(σleft)(1)	+	(1	–	σleft)

(0)	And	for	down:	
Here,	it	is	0	with	probability	σleft	and	1	with	probability	1	–	σleft.	Therefore,

his	expected	utility	for	down	equals:	EUdown	=	(σleft)(0)	+	(1	–	σleft)(1)	Now	we	set
EUup	equal	to	EUdown	and	solve	for	σleft:	EUup	=	EUdown	EUup	=	(σleft)(1)	+	(1	–
σleft)(0)	EUdown	=	(σleft)(0)	+	(1	–	σleft)(1)	(σleft)(1)	+	(1	–	σleft)(0)	=	(σleft)(0)	+	(1	–
σleft)(1)	σleft	=	1	–	σleft	2σleft	=	1
σleft	=	1/2
	

Since	each	player	selects	both	of	his	or	her	strategies	with	probability	1/2,
each	outcome	occurs	in	the	MSNE	with	probability	1/4.	In	two	of	these
outcomes,	the	players	earn	0.	In	the	other	two,	they	earn	1.	As	such,	their
expected	utility	in	the	MSNE	is	1/2.	This	is	strictly	worse	than	either	of	the
PSNE,	which	is	problematic	for	the	players.

One	way	to	escape	the	inefficient	mixed	strategy	Nash	equilibria	in	pure
coordination	and	battle	of	the	sexes	is	to	follow	social	norms	and	laws.	Driving
on	the	road	in	the	United	States	is	very	easy	because	a	law	tells	us	to	drive	on	the
right	side,	and	that	is	an	efficient	Nash	equilibrium.	In	battle	of	the	sexes,
perhaps	the	couple	had	a	rule	of	thumb	that	the	man	chooses	where	to	go	on
Fridays	and	the	woman	chooses	where	to	go	on	Saturdays.	If	that	were	the	case,
they	would	only	need	to	look	at	a	calendar	to	coordinate	even	if	they	could	not
directly	communicate.	Thus,	these	strange	MSNE	help	us	interpret	the
usefulness	of	these	types	of	coordination	rules.
	



1.6.4:	A	Shortcut	for	Zero	Sum	Games
In	chicken	and	battle	of	the	sexes,	each	player’s	payoff	in	the	MSNE	is	equal

to	his	or	her	opponent’s.	However,	unless	the	game	is	as	symmetrical	as	the	ones
above,	that	will	usually	not	be	the	case.	To	see	an	example	where	the	payoffs
differ,	refer	back	the	modified	form	of	matching	pennies	discussed	in	Lesson
1.5:

Begin	by	recalling	that	player	1	mixes	with	probability	1/6	on	up	and	5/6	on
down,	while	player	2	mixes	with	probability	1/3	on	left	and	2/3	on	right.
Therefore,	<up,	left>	occurs	with	probability	1/6	times	1/3;	<down,	left>	occurs
with	probability	5/6	times	1/3;	<up,	right>	occurs	with	probability	1/6	times	2/3;
and	<down,	right>	occurs	with	probability	5/6	times	2/3.

Let’s	focus	on	player	1’s	payoffs	and	use	these	probabilities	to	calculate	his
expected	utility:

So	his	expected	utility	equals:
	
EU1	=	(1/6)(1/3)(3)	+	(5/6)(1/3)(-1)	+	(1/6)(2/3)(-2)	+	(5/6)(2/3)(0)
EU1	=	(1/18)(3)	+	(5/18)(-1)	+	(2/18)(-2)	+	(10/18)(0)
EU1	=	3/18	–	5/18	–	4/18
EU1	=	-6/18
EU1	=	-1/3
	

Rather	than	calculating	player	2’s	expected	utility	as	usual,	recall	that	this
game	is	zero	sum:	every	time	a	player	gains	some	amount,	the	other	player	loses
that	amount.	In	other	words,	if	we	sum	the	payoffs	for	each	individual	outcome,
all	add	up	to	0.	Given	that	player	1’s	gain	is	player	2’s	loss	and	vice	versa,	if
player	1’s	expected	utility	equals	-1/3,	then	player	2’s	expected	utility	must	be
the	negative	of	that	payoff,	or	--1/3	=	1/3.

In	summary,	we	have	learned	two	things	from	this	lesson.	First,	calculating
payoffs	in	mixed	strategy	Nash	equilibria	of	zero	sum	games	is	easy,	since	you
functionally	calculate	both	players’	payoffs	by	finding	one	player’s.	And	second,



the	players’	payoffs	need	not	be	equal	in	MSNE;	“equilibrium”	only	refers	to	the
stability	of	certain	strategies,	not	any	sort	of	balance	in	the	players’	payoffs.

	



1.6.5:	Checking	Your	Answer
Recall	that	the	mixed	strategy	algorithm	guarantees	that	a	player	earns	the

same	payoff	for	selecting	either	of	his	or	her	pure	strategies.	Consequently,	we
can	also	calculate	a	player’s	payoff	by	calculating	his	or	her	payoff	for	selecting
one	of	his	or	her	strategies.

For	example,	we	found	that	player	1	earned	-1/3	in	the	equilibrium	of	the
previous	game	by	going	through	each	possible	outcome.	But	consider	his
expected	utility	for	choosing	up.	He	receives	3	whenever	player	2	goes	left	and
-2	whenever	she	picks	right.	In	equilibrium,	she	moves	left	with	probability	1/3
and	right	with	probability	2/3.	Therefore,	player	1’s	expected	utility	for	up
equals:

	
EUup	=	(1/3)(3)	+	(2/3)(-2)
EUup	=	3/3	+	-4/3
EUup	=	-1/3

	
As	claimed,	this	is	his	equilibrium	expected	utility.
Having	an	additional	method	to	calculate	equilibrium	expected	utilities	is

useful	for	a	couple	reasons.	First,	it	allows	you	to	check	your	answer.	If	the
methods	of	calculation	produce	different	payoffs,	you	know	you	have	done
something	wrong	and	need	to	check	things	again.	Second,	although	the	first
method	is	intuitively	easier	to	grasp,	the	alternative	method	is	computationally
less	intensive.	Once	you	feel	comfortable	with	the	process,	you	will	want	to	use
this	second	method	exclusively.

	



Takeaway	Points
1)	Expected	utilities	in	MSNE	are	weighted	averages	of	each	of	the	outcomes
that	occur	in	equilibrium.
2)	In	a	zero	sum	game,	a	player’s	payoff	is	the	negative	of	the	opposing
player’s	payoff.



Lesson	1.7:	Strict	Dominance	in	Mixed	Strategies

Consider	the	following	game:	
Specifically,	note	that	middle	is	not	dominated	by	player	1’s	other	pure

strategies.	To	see	this,	let’s	first	compare	middle	to	up:	

If	player	2	selects	left,	player	1	prefers	to	go	up	and	earn	3,	which	is	better
than	the	0	he	otherwise	earns	for	middle.	But	if	player	2	chooses	right,	player	1
would	now	rather	go	middle,	as	0	is	greater	than	the	-1	he	earns	for	up.	So	up
does	not	dominate	middle.

Down	does	not	dominate	middle	either:	
If	player	2	picks	left,	then	player	1	is	better	off	going	middle;	but	if	she	goes

right,	he	ought	to	go	down.	So	down	does	not	dominate	middle.
Combining	these	two	pieces	of	information	together,	we	now	know	that	no

pure	strategy	dominates	middle.	Nevertheless,	middle	is	strictly	dominated.
How?	If	a	mixture	of	two	pure	strategies	strictly	dominates	a	third	strategy,	that
third	strategy	is	strictly	dominated.

To	see	how	middle	is	strictly	dominated	in	this	particular	game,	consider	a
mixed	strategy	from	player	1	where	he	plays	up	with	probability	1/2	and	down
with	probability	1/2.	Let’s	calculate	his	expected	utility	if	player	2	plays	left:	

Using	this	matrix	for	guidance,	we	know	that	he	will	earn	3	with	probability
1/2	and	-1	with	probability	1/2.	As	an	equation:	(1/2)(3)	+	(1/2)(-1)	3/2	–	1/2



2/2
1
	

Note	that	his	expected	utility	for	this	mixed	strategy	is	greater	than	the	0	that
he	would	earn	if	he	played	middle	as	pure	strategy.

Now	suppose	player	2	played	right	and	player	1	stuck	to	this	mixed	strategy:

Now	he	earns	-1	with	probability	1/2	and	2	with	probability	2.	Therefore,	his
expected	utility	equals:	(1/2)(-1)	+	(1/2)(2)	-1/2	+	2/2
1/2
	

Again,	this	expected	utility	is	greater	than	the	0	he	earns	if	he	plays	middle
in	response	to	player	2	selecting	right.	That	means	regardless	of	player	2’s
choice,	player	1	would	be	better	off	playing	this	mixture	between	up	and	down
than	playing	middle	as	a	pure	strategy.	Thus,	middle	is	strictly	dominated.

Other	mixtures	between	up	and	down	also	strictly	dominate	middle.	For
example,	up	with	probability	49/100	and	down	with	probability	51/100	or	up
with	probability	51/100	and	down	with	probability	49/100	will	both	produce	a
strictly	better	outcome	than	middle	regardless	of	what	player	2	does.	However,
this	is	superfluous	information.	Once	we	know	that	a	mixture—any	mixture	at
all—of	some	pure	strategies	strictly	dominates	another	pure	strategy,	we	can
immediately	remove	that	dominated	pure	strategy	just	as	we	have	done	in	the
past.

Specifically,	that	means	we	can	reduce	the	original	game	to	this	far	less

intimidating	form:	
It	is	easy	to	see	that	there	are	no	pure	strategy	Nash	equilibria	here.	For	the

<up,	left>	outcome,	player	2	can	deviate	to	right	and	improve	from	-1	to	1.	For
the	<up,	right>	outcome,	player	1	can	deviate	to	down	and	improve	from	-1	to	2.
For	the	<down,	right>	outcome,	player	2	can	deviate	to	left	and	improve	from	-1
to	2.	Finally,	for	the	<down,	left>	outcome,	player	1	can	deviate	to	up	and
improve	from	-1	to	3.

As	such,	we	look	to	the	mixed	strategy	algorithm	to	provide	a	solution.	Let’s



start	with	player	1’s	mixed	strategy.	Consider	player	2’s	payoff	for	playing	left

as	a	pure	strategy	in	response	to	that	mixture:	
So	with	probability	σup,	player	2	earns	-1;	and	with	probability	1	–	σup,	she

earns	2.	Therefore,	her	expected	utility	equals:	EUleft	=	(σup)(-1)	+	(1	–	σup)(2)
Next,	we	need	to	find	her	expected	utility	for	right	against	that	same	mixed

strategy:	
Here,	she	earns	1	with	probability	σup	and	-1	with	probability	1	–	σup.	As	an

equation:	EUright	=	(σup)(1)	+	(1	–	σup)(-1)	To	finish,	we	set	the	expected	utility
for	left	equal	to	the	expected	utility	for	right	and	solve	for	σup:	EUleft	=	EUright

EUleft	=	(σup)(-1)	+	(1	–	σup)(2)	EUright	=	(σup)(1)	+	(1	–	σup)(-1)	(σup)(-1)	+	(1	–
σup)(2)	=	(σup)(1)	+	(1	–	σup)(-1)	-σup	+	2	–	2σup	=	σup	–	1	+	σup	-3σup	+	2	=	2σup	–	1
5σup	=	3
σup	=	3/5
	

So	player	1	picks	up	with	probability	3/5	and	down	with	probability	2/5	in
the	MSNE.

Let’s	switch	to	player	2’s	mixed	strategy.	Consider	player	1’s	payoffs	for	up

in	response	to	her	mixture:	
Player	1	earns	3	with	probability	σleft	and	-1	with	probability	1	–	σleft.	Or:

EUup	=	(σleft)(3)	+	(1	–	σleft)(-1)	Now	for	down:	
Here,	he	earns	-1	with	probability	σleft	and	2	with	probability	1	–	σleft.	As	an

equation:	EUdown	=	(σleft)(-1)	+	(1	–	σleft)(2)	Finally,	to	solve	for	the	exact
mixture,	we	set	his	expected	utility	for	up	equal	to	his	expected	utility	for	down:
EUup	=	EUdown	EUup	=	(σleft)(3)	+	(1	–	σleft)(-1)	EUdown	=	(σleft)(-1)	+	(1	–	σleft)(2)
(σleft)(3)	+	(1	–	σleft)(-1)	=	(σleft)(-1)	+	(1	–	σleft)(2)	3σleft	–	1	+	σleft	=	-σleft	+	2	–
2σleft	4σleft	–	1	=	-3σleft	+	2



7σleft	=	3
σleft	=	3/7
	

So	in	the	MSNE,	player	1	selects	up	with	probability	3/5	and	down	with
probability	2/5	while	player	2	chooses	left	with	probability	3/7	and	right	with
probability	4/7.

Although	strict	dominance	guarantees	that	player	1	cannot	profitably	deviate
to	middle,	let’s	verify	that	this	is	the	case.	Specifically,	note	that	player	1	earns	a

guaranteed	payoff	of	0	for	selecting	middle:	
Effectively,	he	can	force	a	payoff	of	0	for	himself,	as	player	2’s	strategy

becomes	irrelevant	for	him	if	he	selects	middle.	Consequently,	if	player	1	cannot
profitably	deviate	from	the	MSNE	to	playing	middle	as	a	pure	strategy,	his
expected	utility	from	the	MSNE	must	be	greater	than	or	equal	to	0.

To	check,	let’s	calculate	the	probability	of	each	outcome	occurring	in	the
MSNE.	Given	the	mixtures	up	with	probability	3/5,	down	with	probability	2/5,
left	with	probability	3/7,	and	right	with	probability	4/7,	the	likelihood	that	each
outcome	occurs	is	simply	the	respective	probabilities	multiplied	together.	That
is,	<up,	left>	occurs	with	probability	3/5	times	3/7;	<down,	left>	occurs	with
probability	2/5	times	3/7;	<up,	right>	occurs	with	probability	3/5	times	4/7;	and
<down,	right>	occurs	with	probability	2/5	times	4/7.

Now	we	match	those	probabilities	with	player	1’s	payoffs	for	each	of	the

outcomes:	
We	now	combine	this	information	together	as	a	formula:	EU1	=	(3/5)(3/7)(3)

+	(2/5)(3/7)(-1)	+	(3/5)(4/7)(-1)	+	(2/5)(4/7)(2)	EU1	=	(9/35)(3)	+	(6/35)(-1)	+
(12/35)(-1)	+	(8/35)(2)	EU1	=	27/35	–	6/35	–	12/35	+	16/35
EU1	=25/35
EU1	=	5/7
	

And,	sure	enough,	his	expected	utility	of	5/7	in	the	MSNE	is	better	than	0	he
would	receive	for	middle	as	a	pure	strategy.
	



1.7.1:	Mixed	Dominance	and	IESDS
We	can	use	mixed	dominance	in	a	sequence	of	iterated	elimination	of	strictly

dominated	strategies	as	normal.	To	see	this,	we	will	use	the	following	game:

Here,	no	pure	strategy	strictly	dominates	right	for	player	2.	We	can	see	this
by	isolating	left	versus	right	and	center	versus	right.	First,	let’s	compare	right
with	left:

Between	these	two,	left	is	better	than	right	for	player	2	if	player	1	plays	up	or
down;	right	is	worth	2	for	her	in	each	of	these	cases,	while	left	is	worth	6	if	he
moves	up	and	7	if	he	moves	down.	However,	right	beats	left	if	player	1	chooses
middle,	as	1	is	greater	than	-4.	As	such,	left	does	not	strictly	dominate	right.

Next,	compare	center	to	right:

Now	right	is	better	if	player	1	chooses	up,	by	a	2	to	1	margin.	In	contrast,	if
player	1	goes	middle,	player	2’s	center	move	earns	her	4,	which	beats	the	1	she
would	earn	by	choosing	right.	Finally,	if	player	1	goes	down,	she	earns	2
regardless	of	which	of	these	two	strategies	she	chooses.	So	center	does	not
strictly	dominate	right.

However,	a	mixture	between	left	and	center	does.	Let’s	calculate	the
expected	utility	for	player	2	if	she	plays	left	with	probability	1/4	and	center	with
probability	3/4.	First,	suppose	player	1	plays	up	as	a	pure	strategy:

So	player	2	earns	6	with	probability	1/4	and	1	with	probability	3/4.



Therefore,	her	expected	utility	equals:
	
EU2	=	(1/4)(6)	+	(3/4)(1)
EU2	=	6/4	+	3/4
EU2	=	9/4
	

In	contrast,	player	2	earns	2	if	she	plays	right	in	this	situation.	Since	9/4	is
greater	2,	the	mixture	provides	a	greater	payoff	for	her	than	playing	right	as	pure
strategy	if	player	1	selects	up.

Now	we	go	to	player	1	playing	middle	as	a	pure	strategy:

Here,	player	2	earns	-4	with	probability	1/4	and	4	with	probability	3/4.	As
such,	her	expected	utility	equals:
	
EU2	=	(1/4)(-4)	+	(3/4)(4)
EU2	=	-4/4	+	12/4
EU2	=	-1	+	3
EU2	=	2
	

Meanwhile,	if	she	plays	right	in	response	to	player	1	playing	middle,	she
earns	1.	Again,	the	mixture	provides	a	better	payoff	with	2.

Finally,	we	move	on	to	player	1	playing	down:

In	this	case,	player	2	earns	7	with	probability	1/4	and	2	with	probability	3/4.
Thus,	her	expected	utility	equals:
	
EU2	=	(1/4)(7)	+	(3/4)(2)
EU2	=	7/4	+	6/4
EU2	=	13/4
	

Playing	right	as	pure	strategy	earns	her	2.	Because	13/4	beats	2,	player	2
again	performs	better	with	the	mixed	strategy.

Indeed,	she	always	does	better	with	the	mixture	between	left	and	center	than
she	does	with	right	as	a	pure	strategy,	so	the	mixed	strategy	strictly	dominates



right.	As	such,	we	can	remove	it	from	the	matrix,	thereby	reducing	the	game	to
the	following:

From	here,	we	can	continue	our	IESDS	process	as	normal.	Note	that	down
now	strictly	dominates	middle	for	player	1:

That	is,	4	beats	3	if	player	2	plays	left	and	3	beats	2	if	she	plays	center.	Since
down	strictly	dominates	middle,	we	can	remove	middle	from	the	matrix	and
leave	the	following:

Left	now	strictly	dominates	center	for	player	2:

If	player	1	moves	up,	left	beats	center	6	to	1.	If	he	moves	down,	left	wins	7
to	2.	Either	way,	left	better	serves	player	2	than	center.	Therefore,	we	can
eliminate	center,	which	leaves	us	with	just	two	outcomes:

From	here,	player	1	simply	picks	the	best	outcome	for	himself.	Since	beats
-3,	he	moves	down.	Thus,	through	iterated	elimination	of	strictly	dominated
strategies,	<down,	left>	is	the	only	Nash	equilibrium	of	this	game.

Overall,	strict	dominance	in	mixed	strategies	can	be	frustrating	to	work	with
—there	are	many	combinations	of	pure	strategies	and	an	infinite	range	of
mixtures	between	those	strategies.	Consequently,	it	takes	effort	to	locate	such



strictly	dominant	mixed	strategies.	However,	the	payoff	is	ultimately	worth	it,	as
we	can	simplify	games	a	great	deal	when	we	do	find	them.

	



Takeaway	Points
1)	Some	pure	strategies	are	strictly	dominated	by	mixed	strategies	but	not
other	pure	strategies.
2)	We	can	eliminate	such	strictly	dominated	strategies	as	a	normal	part	of	the
IESDS	process.



Lesson	1.8:	The	Odd	Rule	and	Infinitely	Many
Equilibria

Let’s	think	back	to	some	of	the	games	we	have	solved	and	how	many	Nash
equilibria	they	had.	The	prisoner’s	dilemma	and	deadlock	each	had	one	pure
strategy	Nash	equilibrium	that	we	could	find	through	strict	dominance.	Many
other	games	we	solved	through	IESDS	also	had	one.	Matching	pennies	had	one
in	mixed	strategies.	The	stag	hunt,	chicken,	and	battle	of	the	sexes	each	had
three:	two	in	pure	strategies	and	one	in	mixed	strategies.

Is	it	a	coincidence	that	all	of	these	games	have	an	odd	number	of	equilibria?
Actually,	it	is	not—a	1971	paper	from	Robert	Wilson	showed	almost	no	games
have	an	even	or	infinite	number	of	equilibria.	However,	some	quirky	games	do
not	follow	this	odd	rule	of	thumb,	and	our	old	friend	weak	dominance	frequently
claims	responsibility.	This	lesson	covers	a	bunch	of	such	games.

To	start,	consider	the	following	voting	game.	Today,	I	am	offering	you	and
your	friend	$1	each	at	absolutely	not	cost	to	either	of	you.	The	two	of	you	only
need	to	approve	the	transfer	to	receive	the	money.	Approval	requires	a
unanimous	positive	vote	on	a	secret	ballot.	As	such,	the	two	of	you	will
simultaneously	cast	your	votes.	I	will	read	the	ballots	and	distribute	the	money	if
the	resolution	passes.

At	first	thought,	we	might	think	that	the	only	reasonable	outcome	is	for	each
of	you	to	receive	$1.	However,	voting	games	like	this	can	have	unexpected
outcomes.	After	all,	the	resolution	requires	unanimity.	As	such,	if	both	of	you
reject	the	offer,	neither	of	you	can	individually	switch	to	accepting	and	alter	the
outcome.	This	leads	to	an	inefficient	Nash	equilibrium.

To	understand	the	logic	here,	let’s	look	at	the	game’s	matrix.	Imagine	up	and
left	represent	accept	while	down	and	right	represent	reject:	

Note	that	up	weakly	dominates	down:	
That	is,	if	player	2	plays	left,	up	beats	down;	but	if	player	2	plays	right,	up



and	down	are	equally	good.

Likewise,	left	weakly	dominates	right:	
Here,	if	player	1	plays	up,	left	is	better	than	right;	but	if	player	1	plays	down,

left	and	right	are	equally	good.
Through	iterated	elimination	of	weakly	dominated	strategies,	<up,	left>	is	a

pure	strategy	Nash	equilibrium.	This	should	not	come	as	a	surprise	given	that
<up,	left>	provides	the	greatest	payoff	for	both	players.

However,	<down,	right>	is	also	a	PSNE.	To	see	this,	suppose	player	1
played	down.	Then	no	matter	what	player	2	does,	she	earns	0.	As	such,	right	is	a
best	response	to	down.	Similarly,	if	player	2	is	playing	right,	player	1	earns	0
whether	he	plays	up	or	down.	Therefore,	down	is	a	best	response	to	right.	That
means	if	the	players	choose	<down,	right>	they	cannot	individually	improve
their	payoffs	to	a	value	greater	than	zero.	Thus,	<down,	right>	is	a	mutual	best
response	and	a	Nash	equilibrium,	which	means	it	is	reasonable	for	the	two	of
you	to	walk	away	without	any	money.

So	far,	we	have	found	two	Nash	equilibria.	Are	there	any	others?	Clearly
<down,	left>	and	<up,	right>	are	not.	In	the	case	of	<down,	left>,	player	1	can
profitably	deviate	to	up	and	increase	his	payoff	from	0	to	1;	likewise,	in	the	case
of	<up,	right>,	player	2	can	profitably	deviate	to	left	and	increase	her	payoff
from	0	to	1.	So	if	this	game	only	has	two	Nash	equilibria,	there	must	be	no
mixed	strategy	Nash	equilibrium.

To	verify	the	absence	of	a	MSNE,	suppose	player	1	mixed	with	probability
σup.	Then	player	2’s	payoff	for	playing	left	is:	EUleft	=	(σup)(1)	+	(1	–	σup)(0)
EUleft	=	σup	And	her	payoff	for	playing	right	is:	EUright	=	(σup)(0)	+	(1	–	σup)(0)
EUright	=	0
	

Consequently,	if	σup	>	0	(that	is,	as	long	as	player	1	is	truly	mixing	and	not
playing	down	with	certainty),	player	2’s	best	response	to	any	such	mixture	is	to
play	left	as	pure	strategy.	The	reason	is	simple—if	she	plays	left,	there	is	some
chance	she	will	receive	1,	but	she	is	guaranteed	to	earn	0	if	she	plays	down.

Player	1’s	best	response	to	a	mixture	from	player	2	works	the	same	way.
Suppose	player	2	mixed	with	probability	σleft.	Then	player	1’s	payoff	for
selecting	up	equals:	EUup	=	(σleft)(1)	+	(1	–	σleft)(0)	EUup	=	σleft	And	his	payoff	for
playing	down	is:	EUdown	=	(σleft)(0)	+	(1	–	σleft)(0)	EUdown	=	0
	



So	just	as	before,	if	player	2	puts	positive	probability	on	left	and	right,	then
player	1’s	best	response	is	to	always	play	up.	As	a	result,	the	players	cannot	mix,
thus	making	this	a	rare	game	that	has	an	even	number	of	equilibria.
	



1.8.1:	Infinitely	Many	Equilibria
Games	can	also	have	infinitely	many	equilibria.	We	will	look	at	two

different	ways	this	can	occur.	First,	consider	this	game:	

To	solve	it,	begin	by	noting	that	left	strictly	dominates	right	for	player	2:	

If	player	1	selects	up,	left	beats	right	for	player	2	by	a	2	to	0	margin.	If	he
plays	down,	left	defeats	right	3	to	-1.	So	regardless	of	what	player	1	does,	player
2	ought	to	move	left.	Thus,	through	iterated	elimination	of	strictly	dominated

strategies,	we	can	reduce	the	game	to	this:	
Knowing	that	player	2	chooses	left,	player	1	earns	2	no	matter	what	he	does.

Therefore,	both	up	and	down	are	pure	strategy	best	responses	to	left.	In	turn,
<up,	left>	and	<down,	left>	are	pure	strategy	Nash	equilibria.

While	that	should	be	obvious,	a	subtle	implication	here	is	that	any	mixture
between	up	and	down	is	also	a	best	response	to	left.	To	see	this,	consider	player
1’s	expected	utility	for	any	mixed	strategy.	We	know	player	2	selects	left,	so
player	1’s	payoff	is	as	follows:	EU1	=	(σup)(2)	+	(1	–	σup)(2)	That	is,	he	earns	2
with	probability	σup	(whatever	percentage	of	the	time	he	chooses	to	play	up)	and
2	with	probability	1	–	σup	(whatever	percentage	of	the	time	he	chooses	to	play
down).	However,	this	formula	quickly	simplifies	to	2:	EU1	=	(σup)(2)	+	(1	–	σup)
(2)	EU1	=	2σup	+	2	–	2σup	EU1	=	2
	

Since	this	is	equal	to	his	payoff	for	playing	up	or	down	pure	strategy,	all	of
these	mixtures	are	also	best	responses	to	left.	As	such,	in	equilibrium,	player	1
can	play	up	as	pure	strategy,	down	as	a	pure	strategy,	or	mix	in	any	fashion
between	those	two.	Infinitely	many	of	such	mixtures	exist;	therefore,	this	game
has	infinitely	many	equilibria.	Although	this	falls	under	the	MSNE	umbrella,	we
can	be	very	specific	and	call	this	a	partially	mixed	strategy	Nash	equilibrium,	as
player	1	mixes	but	player	2	does	not.



Another	interesting	thing	to	note	is	that	player	1	plays	a	weakly	dominated
strategy	with	positive	probability	in	the	MSNE.	To	see	this,	let’s	focus	on	player

1’s	payoffs	in	isolation:	
As	we	have	just	seen,	if	player	2	selects	left,	both	up	and	down	are	equally

as	good.	But	putting	right	back	into	the	matrix	reveals	that	up	is	better	for	player
1	in	that	case.	Consequently,	up	weakly	dominates	down.	However,	if	we
eliminated	down,	the	<down,	left>	PSNE	and	the	set	of	MSNE	where	player	1
mixes	between	up	and	down	with	any	probability	both	disappear.	In	case	the
point	about	weak	dominance	was	not	already	clear,	this	game	provides	another
example	of	why	we	have	to	be	extremely	careful	about	eliminating	weakly
dominated	strategies.

Moving	on,	a	game	can	have	infinitely	many	equilibria	in	a	different	way.
The	previous	example	was	trivial	because	player	1’s	best	response	to	player	2’s
strategy	was	uninteresting—he	earned	2	no	matter	what	he	did.	No	change	in	his
strategy	would	make	player	2	want	to	change	her	strategy.	But	that	is	not	the
case	in	all	games.	Recall	back	to	this	game,	which	we	saw	in	Lesson	1.4:	

After	marking	best	responses,	we	saw	that	<down,	left>	and	<up,	right>

were	both	pure	strategy	Nash	equilibria:	
Note	that	both	left	and	right	are	best	responses	to	up	for	player	2.

Consequently,	as	long	as	player	1	selects	up	as	a	pure	strategy,	player	2	is	free	to
mix	between	left	and	right	in	any	combination.	Given	that,	we	should	wonder
what	sorts	of	mixed	strategies	employed	by	player	2	would	induce	player	1	to
play	up	over	down.

Unlike	the	previous	game,	this	requires	a	few	calculations.	First,	we	need	to
know	player	1’s	payoff	for	playing	up	as	a	function	of	player	2’s	mixed	strategy:



So	player	1	earns	2	with	probability	σleft	and	4	with	probability	1	–	σleft.	We
can	write	that	as	this	equation:	EUup	=	(2)(σleft)	+	(4)(1	–	σleft)	Moving	on	to

down:	
Now	player	1	earns	3	with	probability	σleft	and	1	with	probability	1	–	σleft.	As

an	equation:	EUdown	=	(3)(σleft)	+	(1)(1	–	σleft)	Remember	that	a	strategy	is	a	best
response	if	it	provides	at	least	as	good	of	a	payoff	as	any	other	alternative.	Thus,
playing	up	is	a	best	response	to	player	2’s	mixed	strategy	if	the	expected	utility
of	playing	up	is	greater	than	or	equal	to	player	1’s	expected	utility	for	playing
down.	Bringing	together	the	previous	two	equations	and	solving	for	the
inequality	yields	the	following:	EUup	≥	EUdown	EUup	=	(2)(σleft)	+	(4)(1	–	σleft)
EUdown	=	(3)(σleft)	+	(1)(1	–	σleft)	(2)(σleft)	+	(4)(1	–	σleft)	≥	(3)(σleft)	+	(1)(1	–	σleft)
2σleft	+	4	–	4σleft	≥	3σleft	+	1	–	σleft	-2σleft	+	4	≥	2σleft	+	1
4σleft	≤	3
σleft	≤	3/4
	

From	this,	we	know	that	up	is	a	best	response	for	player	1	if	player	2	plays
left	no	greater	than	3/4	of	the	time	(and	thus	plays	right	at	least	1/4	of	the	time).
Essentially,	such	a	mixture	successfully	deters	player	1	from	choosing	down,
thereby	securing	player	2	her	payoff	of	3.	And	since	player	2	earns	3	regardless
of	what	she	does	if	player	1	plays	up,	she	too	is	playing	a	best	response	to	his
strategy.	Therefore,	infinitely	many	Nash	equilibria	exist:	<down,	left>,	<up,
right>,	and	infinitely	many	in	mixed	strategies	where	player	1	selects	up	and
player	2	chooses	left	with	probability	no	greater	than	3/4.

Once	more,	weak	dominance	is	responsible;	left	weakly	dominates	right	for

player	1:	
We	already	know	player	2	is	indifferent	between	left	and	right	if	player	1

plays	up,	but	left	beats	right	for	her	if	he	moves	down.	Absent	that	weak
dominance,	the	infinitely	many	equilibria	disappear.

Here	is	a	similar	game:	



There	are	two	pure	strategy	Nash	equilibria:	<up,	left>	and	<down,	right>.
We	can	verify	this	by	marking	best	responses.	To	begin,	suppose	player	1	went

up:	
Since	1	beats	0,	left	is	player	2’s	best	response	to	up.
On	the	other	hand,	suppose	player	1	went	down:	

Now	player	2	earns	2	regardless	of	what	she	does.	As	such,	both	left	and
right	are	optimal.

Let’s	move	on	to	player	1’s	best	responses.	To	start,	suppose	player	2	played

left:	
Then	up	is	the	best	response,	as	3	beats	2.

Finally,	consider	what	happens	if	player	2	plays	right:	
Since	2	beats	0,	down	is	the	best	response	here.
Putting	all	of	that	together,	the	original	game	looks	like	this:	

Since	<up,	left>	and	<down,	right>	have	asterisks	for	both	players	payoffs,
they	are	mutual	best	responses	and	therefore	pure	strategy	Nash	equilibrium.

However,	notice	that	left	and	right	are	both	best	responses	for	player	2	if
player	1	goes	down.	As	such,	if	player	1	selects	down	as	a	pure	strategy,	player	2
can	mix	freely	between	left	and	right.	Consequently,	we	need	to	check	if	down	is
a	best	response	for	player	1	to	any	of	these	mixtures	from	player	2.

To	do	so,	we	must	write	out	player	1’s	expected	utility	for	each	of	his	pure
strategies	as	a	function	of	player	2’s	mixed	strategy.	Let’s	begin	with	up:	



In	this	case,	player	1	earns	3	with	probability	σleft	and	0	with	probability	1	–
σleft.	As	an	equation:	EUup	=	(3)(σleft)	+	(0)(1	–	σleft)	EUup	=	3σleft	Next,	we	must

check	down:	
Here,	he	earns	2	with	probability	σleft	and	2	with	probability	1	–	σleft.

Unsurprisingly,	that	simplifies	to	just	2.	So	regardless	of	player	2’s	mixed
strategy,	player	1	earns	2	if	he	selects	down.

Recall	that	we	are	looking	for	all	mixed	strategies	for	player	2	that	make
down	a	best	response	for	player	1.	That	is,	we	need	to	know	for	what	values	of
σleft	is	player	1’s	expected	utility	for	down	greater	than	or	equal	to	his	expected
utility	for	up.	A	little	bit	of	algebra	yields	the	answer:	EUup	≤	EUdown	EUup	=	3σleft
EUdown	=	2
3σleft	≤	2
σleft	≤	2/3
	

Ergo,	this	game	has	infinitely	many	mixed	strategy	Nash	equilibria	in	which
player	1	plays	down	as	a	pure	strategy	and	player	2	chooses	left	with	probability
no	greater	than	2/3	and	plays	right	with	the	remaining	probability.

Once	more,	weak	dominance	is	at	work:	
Left	weakly	dominates	right.	If	player	1	moves	down,	then	player	2	earns	2

regardless	of	her	move.	But	if	player	1	chooses	up,	the	1	for	left	trumps	the	0	for
right.
	



1.8.2:	Take	or	Share?
Let’s	look	at	an	application	that	involves	infinitely	many	equilibria.	There	is

a	pot	of	$8,000.	Simultaneously,	both	players	select	whether	to	take	or	share	the
money.	If	both	share,	they	split	the	pot	evenly.	If	one	takes	and	the	other
attempts	to	share,	the	taker	steals	all	of	the	money.	Finally,	if	both	take,	no	one
receives	any	money.

Suppose	the	players	only	want	to	maximize	their	share	of	the	money.	Then
here	is	a	matrix	representation	of	the	game:

This	game	has	appeared	on	various	reality	shows	with	increasing	regularity
and	has	been	a	staple	of	game	shows.	(If	you	have	ever	seen	Friend	or	Foe,
Golden	Balls,	Shafted,	or	The	Bank	Job,	each	show’s	bonus	round	uses	these
rules.)

Many	people	identify	this	as	a	prisoner’s	dilemma	and	claim	<take,	take>	is
the	unique	equilibrium	of	this	game.	However,	this	game	is	far	more
complicated	and	has	many	more	Nash	equilibria.

Let’s	begin	by	finding	each	player’s	best	responses.	To	start,	consider	player
1’s	response	to	player	2	sharing:

If	player	1	takes,	he	steals	all	$8,000.	If	he	shares,	he	only	receives	half	that.
Thus,	take	is	the	best	response.

Now	suppose	player	2	takes:

Here,	he	earns	$0	regardless	of	his	selection.	As	such,	each	0	receives	an
asterisk.

The	same	is	true	for	player	2.	First,	suppose	player	1	shares:

Just	as	before,	player	2	doubles	her	winnings	by	taking,	so	the	8	earns	the



star.
Now	consider	player	1	taking:

This	time,	player	2	is	stuck	with	0,	so	both	receive	the	asterisk.
Let’s	put	all	of	that	together:

Already,	we	see	how	vastly	different	take	or	share	is	from	the	prisoner’s
dilemma.	The	prisoner’s	dilemma	had	a	unique	equilibrium,	as	confess	was	a
strictly	dominant	strategy	for	both	players.	Here,	take	weakly	dominates	share,
which	allows	for	<take,	share>	and	<share,	take>	to	also	be	Nash	equilibria.

Delving	further,	we	can	show	there	are	infinitely	many	Nash	equilibria.	The
key	is	that	a	player	is	indifferent	between	taking	and	sharing	if	the	other	player
takes.	Thus,	the	player	not	taking	is	free	to	randomize	between	taking	and
sharing.

The	only	question	remaining	is	whether	the	taking	player	is	still	willing	to
take	as	a	pure	strategy	against	that	randomization.	Specifically,	it	must	be	that
the	taking	player’s	expected	utility	for	taking	is	greater	than	or	equal	to	his	or
her	expected	utility	for	sharing.	But	take	weakly	dominates	share,	so	it	must	be
the	case	that	his	or	her	expected	utility	for	taking	is	greater	than	or	equal	to
sharing.	So	taking	as	a	pure	strategy	is	a	best	response.

That	leaves	us	with	a	host	of	equilibria.	First,	there	are	three	in	pure
strategies:	<take,	take>,	<share,	take>,	and	<take,	share>.	Then	there	are
infinitely	many	in	partially	mixed	strategies.	In	these	partially	mixed	strategy
Nash	equilibria,	exactly	one	player	takes	as	a	pure	strategy	while	the	other	mixes
freely	between	take	and	share.

As	always,	keep	in	mind	that	these	equilibria	are	a	function	of	the
preferences	of	the	players.	In	this	case,	we	assumed	that	the	players	only	wanted
to	maximize	money.	However,	they	may	have	other	motivations.	For	example,	if
they	are	slightly	vengeful,	they	may	want	to	maximize	their	share	of	the	money
and	want	to	deny	the	other	player	any	money	if	the	opponent	chooses	take.	Such
preferences	make	taking	a	strictly	dominant	strategy,	which	turns	this	game	into
a	regular	prisoner’s	dilemma.	Meanwhile,	generous	players	may	want	to	mimic
the	other	player’s	strategy;	that	is,	they	want	to	share	if	their	opponent	wishes	to
share	and	take	if	their	opponent	wishes	to	take.	These	preferences	mirror	the	stag



hunt,	which	has	three	equilibria	and	allows	for	cooperative	play.
In	any	case,	whenever	you	look	at	a	model,	you	should	always	question	the

players’	preferences.	Are	players	really	indifferent	between	sharing	and	taking
when	their	opponents	take	in	the	take	or	share	game?	Do	players	really	always
want	to	maximize	money?	Does	anyone	have	benevolent	preferences?

Game	theoretical	models	can	use	all	of	these	preferences,	but	it	is	up	to	the
game	theorist	to	build	them	into	the	structure	of	the	game.	If	you	believe	a	model
has	bizarre	preferences,	consider	altering	the	payoffs	and	solve	the	new	game	for
yourself.	Your	answers	will	be	different	and	potentially	better	match	reality.
	



Takeaway	Points
1)	Almost	all	games	have	an	odd	number	of	equilibria.
2)	Weak	dominance	often	leads	to	violations	of	the	rule.
3)	If	you	find	an	even	number	of	equilibria,	double	check	your	work	to	make
sure	you	are	not	missing	any.



Lesson	2.1:	Game	Trees	and	Subgame	Perfect
Equilibrium

At	the	end	of	the	last	chapter,	we	looked	at	this	game:

We	call	this	Selten’s	game	(sometimes	Selten’s	horse),	named	after
Reinhardt	Selten,	a	Nobel	Prize	winning	game	theorist.	Selten	contributed	to	the
theory	of	equilibrium	selection.	He	claimed	that	certain	equilibria	make	more
sense	than	others	given	the	context	of	the	game.

Recall	that	Selten’s	game	has	infinitely	many	equilibria.	Two	are	in	pure
strategies:	<up,	left>	and	<down,	right>.	The	rest	are	a	continuum	of	partially
mixed	strategy	Nash	equilibria,	in	which	player	1	selects	down	as	a	pure	strategy
and	player	2	chooses	left	with	probability	no	greater	than	2/3	and	right	with
remaining	probability.

In	terms	of	prediction,	multiple	equilibria	are	problematic.	It	would	be	nice
if	we	could	bluntly	predict	that	player	1	always	takes	some	action	and	player	2
always	takes	another	action.	Here,	however,	we	must	remain	vague.	If	the	matrix
form	of	Selten’s	game	modeled	a	real	world	phenomenon,	player	1	could	play	up
and	player	2	could	play	left	in	equilibrium.	Or	player	1	could	play	down	and
player	2	could	play	right.	Or	they	could	play	the	partially	mixed	strategy	Nash
equilibrium.	All	told,	we	cannot	say	which	of	these	the	players	actually	choose
purely	based	off	math.

That	said,	matrix	games	assume	players	move	at	the	same	time	or	cannot	see
each	other’s	moves.	We	know	of	many	examples	where	such	an	assumption
makes	sense.	When	prisoners	are	sequestered	in	interrogation	rooms,	they	cannot
observe	what	the	other	one	has	done.	In	American	football,	the	offense	does	not
know	what	type	of	play	the	defense	has	called	when	it	makes	its	play,	and	the
defense	does	not	know	what	type	of	play	the	offense	has	called	when	it	makes	its
play.	When	a	couple	tries	to	meet	at	the	same	location	without	the	ability	to
communicate,	they	effectively	select	their	destinations	with	the	other	side	in	the
dark.

However,	some	strategic	interactions	flow	over	time	in	specific	steps.	We
call	these	types	of	games	sequential	games,	since	the	order	of	play	follows	a
sequence.	For	example,	a	country’s	army	might	invade	an	island,	and	then	its



rival	must	decide	whether	to	attack	or	concede	the	territory.	A	police	officer	may
request	to	search	a	suspect’s	vehicle	but	must	wait	for	permission	before
deciding	how	thoroughly	to	search.	In	the	game	of	nim,	players	take	turns
selecting	how	many	objects	to	remove	from	a	pile;	the	player	to	pick	up	the	last
object	wins.	In	chess,	white	takes	a	turn,	black	replies,	and	the	cycle	repeats.

We	have	seen	Selten’s	game	as	a	simultaneous	move	game.	But	what	if	the
players	moved	sequentially?	Consider	the	following	scenario.	Firm	2	currently
holds	a	monopoly	on	a	particular	market.	Firm	1	is	considering	whether	to
challenge	Firm	2’s	monopoly	status.	If	it	enters,	Firm	2	must	decide	whether	to
accede	to	Firm	1’s	entry	or	declare	a	price	war.	If	Firm	2	declares	a	price	war,	all
the	profits	go	away,	and	both	earn	0.	If	Firm	2	accedes,	both	firms	can	profit.
Here,	Firm	1	receives	a	payoff	of	3	while	Firm	2	receives	a	payoff	of	1.	If	Firm	1
stays	out,	it	saves	its	investment	and	receives	a	payoff	of	2.	Meanwhile,	without
the	competition	of	Firm	1,	Firm	2	can	increase	its	payoff	to	2.

We	normally	express	such	interactions	using	game	trees:

We	call	this	the	extensive	form	of	the	firm	entry	game.	The	interaction
begins	at	the	open	circle—called	a	decision	node—where	Firm	1	chooses
whether	to	enter	or	stay	out.	Firm	2	selects	accede	or	war	at	her	decision	node
only	if	Firm	1	enters.

Notice	that	the	moves	match	the	payoff	matrix	of	Selten’s	game.
Specifically,	Firm	1’s	stay	out	move	is	equivalent	to	down,	as	players	earn	2.
Meanwhile,	Firm	1’s	enter	move	is	equivalent	to	up.	It	then	allows	Firm	2	to
choose	between	accede	(left)	and	war	(right).	The	payoffs	match	the	<up,	left>
and	<up,	right>	outcomes.	As	such,	we	could	rewrite	Selten’s	game	as	follows:



Do	the	pure	strategy	Nash	equilibria	from	Selten’s	game	still	make	sense	if
we	think	of	the	game	sequentially,	as	in	the	firm	entry	example?	The	<up,	left>
equilibrium	certainly	does.	If	player	2	ever	had	a	chance	to	move,	she	would
pick	left	over	right.	Looking	at	her	decision	node	makes	this	obvious:

We	call	this	portion	of	the	game	a	subgame.	Since	player	2	can	observe
player	1’s	move,	she	knows	he	has	selected	up.	At	this	point,	she	only	needs	to
worry	about	maximizing	her	payoff.	If	she	moves	left,	she	earns	1;	if	she
chooses	right,	she	earns	0.	Therefore,	she	chooses	left.	Meanwhile,	player	1
receives	a	payoff	of	3,	which	is	his	largest	expected	utility	possible.	Neither	has
any	incentive	to	deviate	from	their	strategies,	so	the	<up,	left>	Nash	equilibrium
remains	sensible.

What	about	the	<down,	right>	equilibrium?	Suppose	player	2	committed
herself	to	playing	right.	Consider	player	1’s	dilemma:

If	player	1	chooses	down,	he	earns	2.	If	he	selects	up,	player	2	moves	right,
and	he	earns	0.	Since	2	is	greater	than	0,	player	1	would	want	to	select	down.

Given	that,	player	2	would	not	want	to	change	her	strategy.	If	player	1
moves	down,	player	2	earns	2,	which	is	her	best	possible	payoff.	So	<down,
right>	might	seem	like	a	reasonable	equilibrium	as	well.

But	is	it?	Suppose	player	1	ignored	player	2’s	threat	to	move	right	and
selected	up	anyway.	Player	2	must	now	choose	between	left	and	right:

Although	player	2	threatened	to	play	right,	as	soon	as	player	1	moves	up,
player	2	has	no	incentive	to	follow	through	on	that	threat.	If	she	does,	she	earns



0;	if	she	plays	left,	she	earns	1.	As	such,	player	2	has	a	profitable	deviation	to
play	left.	Player	1	recognizes	player	2’s	vulnerability	and	therefore	selects	up.	In
turn,	player	2	selects	left.	As	such,	we	cannot	reasonably	believe	the	players	will
play	the	<down,	right>	equilibrium.

Note	that	this	implies	that	player	2	cannot	reasonably	play	the	partially
mixed	strategy	Nash	equilibrium	either.	When	we	looked	at	the	simultaneous
move	game,	we	found	an	equilibrium	in	which	player	2	played	left	with
probability	no	greater	than	2/3.	However,	if	player	1	moves	up,	the	only	rational
thing	player	2	can	do	is	select	left.	This	precludes	the	possibility	of	mixing
between	left	and	right,	which	destroys	the	partially	mixed	strategy	Nash
equilibrium	as	well.

Thus,	only	the	<up,	left>	Nash	equilibrium	survived	when	we	looked	at	the
game	sequentially.	We	call	such	an	equilibrium	a	subgame	perfect	equilibrium
(SPE).	Subgame	perfection	ensures	that	players	only	believe	threats	that	others
have	incentive	to	carry	out	when	it	is	time	to	execute	those	threats.	Here,	player
2	threatened	to	play	right,	but	she	could	not	follow	through	once	it	was	her	turn
to	move.	Thus,	player	1	refused	to	believe	her	threat	to	move	right,	leaving	<up,
left>	as	the	only	Nash	equilibrium	that	survived	subgame	perfection.

Just	as	Nash	equilibrium	is	the	gold	standard	for	simultaneous	move	games,
subgame	perfect	equilibrium	is	the	gold	standard	for	extensive	form	games.	As
we	saw	in	this	example,	all	SPE	are	Nash	equilibria,	but	not	all	Nash	equilibria
are	SPE.	As	such,	subgame	perfection	is	a	refinement	of	Nash	equilibrium	to
ensure	that	players’	threats	are	credible.	Consequently,	we	will	be	working	with
SPE	for	the	remainder	of	this	chapter.

	



2.1.1:	The	Meaning	of	the	Numbers
In	the	first	chapter,	we	discussed	how	the	payoffs	represented	a	player's

subjective	ranked	ordering	of	possible	outcomes,	with	the	largest	number
representing	the	best	outcome	and	the	smallest	outcome	representing	the	worst.
While	all	that	remains	true	in	extensive	form	games,	we	now	assume	that	the
payoffs	represent	a	ranked	ordering	of	outcomes	given	what	has	happened	in	the
game.	Consequently,	the	payoffs	reflect	a	player's	evaluation	of	fairness,
distributive	justice,	and	equality.

Some	critics	of	game	theory	claim	that	Selten's	game	makes	a	false
prediction.	They	argue	that,	in	real	life,	someone	in	player	2's	shoes	would	be
bitter	that	player	1	was	not	“nice”	and	did	not	select	down.	In	turn,	to	punish
player	1,	player	2	would	select	right	and	force	player	1’s	payoff	to	0,	even
though	this	reduces	player	2's	payoff	from	1	to	0.

However,	this	criticism	is	ignorant	of	our	game	theoretical	principles.	Let's

isolate	player	2's	decision	once	again:	
As	mentioned,	payoffs	incorporate	players’	subjective	views	on	fairness,

distributive	justice,	and	equality	by	definition.	Thus,	these	expected	utilities	tell
us	that	if	player	1	moves	up,	player	2	would	rather	move	left	than	right.	To	say
that	player	2	would	still	rather	move	right	to	punish	player	1	double	counts	her
view	of	fairness.	If	she	actually	valued	fairness	in	the	manner	described,	her
payoff	for	left	would	be	0	and	her	payoff	for	right	would	be	1.	But	that	is	not	the
case—she	earns	1	for	left	and	0	for	right.	Thus,	if	player	1	moves	left,	we	know
player	2	moves	right.

As	we	discussed	in	the	previous	chapter,	game	theory	does	not	normatively
tell	players	how	to	think	or	what	their	preferences	should	be.	Indeed,	we	can
model	scenarios	where	players	value	fairness	more	than	their	own	financial	well
being.	But,	when	we	do,	the	payoffs	already	incorporate	these	types	of
preferences.	Do	not	over	think	the	game;	accept	the	numbers	as	they	appear.

	



2.1.2:	Games	with	Simultaneous	Moves
In	Selten’s	game,	the	players	took	turns	moving.	However,	some	extensive

form	games	involve	simultaneous	moves.	Here	is	a	simple	example:

This	is	matching	pennies.	If	the	coins	match,	player	1	earns	1	and	player	2
earns	-1.	Otherwise,	player	1	earns	-1	and	player	2	earns	1.	Player	1	begins	by
choosing	heads	or	tails.	Player	2,	then	chooses	heads	or	tails	without	seeing
player	1’s	move.	The	dashed	line	indicates	that	player	2	is	blind	to	player	1’s
strategy.	We	call	this	dashed	line	player	2’s	information	set.	The	information	it
conveys	is	that	player	1	played	heads	or	tails,	but	she	cannot	see	which.

We	cannot	use	the	method	we	saw	in	Selten’s	game	to	solve	this	game.
Previously,	we	deciphered	player	2’s	optimal	move	and	based	player	1’s	initial
decision	off	of	that	knowledge.	However,	player	2	does	not	know	what	player	1
did	when	she	moves.	She	is	in	the	dark,	just	like	in	the	simultaneous	move
version	of	the	game.

In	fact,	when	we	encounter	simultaneous	moves	in	extensive	form	games,
the	best	thing	to	do	is	convert	that	game	to	a	matrix	and	solve	the	game.	Notice
that	the	following	matrix	game	has	the	same	strategies	and	outcomes	as	the
extensive	form	did:

We	already	know	that	both	players	to	mix	between	heads	and	tails	each	with
probability	.5.	Thus,	no	additional	work	is	necessary	here;	those	mixed	strategies
are	also	the	equilibrium	of	the	extensive	form	version	of	the	game.
	



2.1.3:	Constructing	Games	with	Simultaneous	Moves
Before	moving	on,	there	are	a	couple	of	important	points	about	simultaneous

moves	in	extensive	form	games.	First,	notice	that	player	2’s	strategies	are
identical	regardless	of	how	player	1	began	the	game:

This	must	be	the	case	whenever	there	is	a	simultaneous	move	and	we	use	the
dashed	line.	To	see	why,	consider	the	alternative:

Here,	depending	on	how	player	1	began	the	game,	player	2	selects	from
different	strategies.	If	he	chose	heads,	player	2	chooses	between	A	and	B;	if	he
chose	tails,	she	chooses	between	C	and	D.	However,	this	has	an	odd	implication.
Consider	player	2’s	thought	process.	She	is	not	supposed	to	know	whether
player	1	chose	heads	or	tails.	But	after	player	1	moves,	she	sees	the	following:

She	can	now	choose	between	A	or	B.	But	this	gives	away	player	1’s	initial
move!	She	knows	the	only	way	she	could	play	A	or	B	is	if	player	1	selects
heads.	So	if	she	sees	that	A	and	B	are	her	choices,	she	can	infer	player	1’s
original	strategy	was	heads.	That	ruins	the	simultaneous	nature	of	the	game,
which	is	why	game	trees	must	have	identical	strategies	after	simultaneous
moves.

Moreover,	player	2	cannot	have	an	extra	strategy	depending	on	player	1’s
move.	To	see	why,	consider	this	slightly	modified	version	of	matching	pennies:



Player	1	begins	with	heads	or	tails.	If	he	selects	heads,	player	2	chooses
between	heads	or	tails.	However,	if	he	picks	tails,	she	decides	among	heads,
tails,	or	pain.	It	is	obvious	player	2	would	never	select	pain	as	her	strategy;	it
generates	an	extremely	negative	payoff	for	her.	Yet	the	mere	presence	of	it
means	she	can	infer	player	1’s	original	decision.

To	see	why,	suppose	player	1	picked	heads:

Player	2	must	decide	between	heads	or	tails	now,	though	she	is	not	supposed
to	know	which	strategy	player	1	chose.	Nevertheless,	she	can	infer	that	he
selected	heads.	Why?	Player	2	cannot	play	pain.	The	only	way	she	could	play
pain	is	if	player	1	selected	tails.	Since	the	pain	strategy	is	not	available,	she
therefore	must	be	on	the	side	of	the	game	tree	where	player	1	played	heads.

She	can	also	infer	when	player	1	picked	tails:

Now	player	2	has	the	pain	option	available,	so	she	immediately	understands
that	she	is	on	the	tails	side	of	the	game.	Either	way,	the	simultaneous	nature	of
the	game	is	ruined.	Thus,	at	any	information	set,	a	player	must	have	the	same
strategies	available	regardless	of	how	the	player	arrived	there.

Second,	player	order	is	irrelevant	in	simultaneous	move	games.	To	see	this,
let’s	flip	the	order	of	moves	around	so	that	player	2	moves	first:

For	the	sake	of	consistency,	player	1’s	payoff	is	still	listed	before	player	2’s,
even	though	player	2	now	moves	first.	Regardless,	this	game	still	converts	to	the
same	matrix	as	when	player	1	went	first:

Obviously,	this	matrix	is	identical	to	the	last	one,	so	its	Nash	equilibrium	is



the	same	as	well.
This	has	an	important	implication.	Imagine	we	had	to	draw	out	the	extensive

form	of	the	following	games:
	

1)	Player	1	picks	heads	or	tails.	Ten	minutes	later,	player	2	picks	heads	or
tails.	Player	2	does	not	see	player	1’s	selection	when	she	decides.
2)	Simultaneously,	player	1	and	player	2	pick	heads	or	tails.
3)	Player	2	picks	heads	or	tails.	Ten	minutes	later,	player	1	picks	heads	or
tails.	Player	1	does	not	see	player	2’s	selection	when	he	decides.

	
Game	theoretically,	these	are	identical	strategic	situations,	so	we	can	use	the

same	extensive	form	for	all	of	them.	Thus,	even	though	player	2	picks	heads	or
tails	first	in	situation	(3),	we	can	draw	the	extensive	form	with	player	1	moving
first!

	



2.1.4:	Why	We	Like	Game	Trees
When	we	want	to	analyze	a	strategic	situation,	knowing	its	extensive	form	is

better	than	knowing	its	matrix.	As	it	turns	out,	there	is	only	one	way	to	represent
an	extensive	form	game	as	a	matrix.	However,	there	can	be	multiple	ways	to
represent	a	matrix	in	extensive	form.	Thus,	if	we	only	have	the	matrix	in	front	of
us,	we	do	not	know	which	of	its	Nash	equilibria	will	survive	subgame
perfection.

Since	we	have	seen	simultaneous	moves	in	extensive	form	games,	we	can
see	how	two	different	game	trees	convert	to	the	same	matrix.	Consider	this	tree:	

Note	that	the	following	matrix	matches	that	extensive	form	game’s	moves

and	payoffs:	
Yet	we	used	this	exact	matrix	to	describe	Selten’s	game	at	the	beginning	of

this	lesson.	So	if	we	only	had	the	matrix	in	front	of	us,	we	would	not	know
whether	the	players	move	at	the	same	time	or	if	player	1	moved	first,	player	2
saw	player	1’s	move,	and	then	player	2	chose	left	or	right.	We	know	this	has
non-trivial	consequences;	<up,	left>	is	the	only	subgame	perfect	equilibrium,	but
<up,	left>	and	<down,	right>	are	both	Nash	equilibria	in	the	simultaneous	move
game.

Having	the	game	tree	in	front	of	us	eliminates	any	confusion	from	the	start,
which	is	why	having	the	extensive	form	of	a	game	is	better.	If	we	really	need	the
matrix,	the	extensive	form	contains	all	the	relevant	information	already.	The
conversion	process	does	not	work	the	other	way	around,	however.
	



Takeaway	Points
1)	In	sequential	games,	players	take	turns	moving.
2)	Subgame	perfect	equilibrium	is	the	solution	concept	for	extensive	form
games.
3)	All	subgame	perfect	equilibria	are	Nash	equilibria,	but	not	all	Nash
equilibria	are	subgame	perfect	equilibria.



Lesson	2.2:	Backward	Induction
Consider	the	“escalation	game”	below:

In	this	game,	two	countries	are	on	the	brink	of	war.	Player	1	begins	by
accepting	the	status	quo	or	issuing	a	threat.	If	he	accepts	the	status	quo,	the	game
ends.	If	he	threatens,	player	2	decides	whether	to	concede	or	escalate	the
conflict.	The	game	ends	if	she	concedes.	If	she	escalates,	player	1	chooses
whether	to	launch	war	or	back	down.	Either	way,	the	game	ends.

If	player	1	accepts	the	status	quo,	each	player	earns	0.	If	player	2	concedes,
player	1	makes	a	slight	gain.	Meanwhile,	player	2	receives	a	slight	loss	and
suffers	a	diminished	reputation	from	the	concession.	Thus,	player	1	earns	1	for
this	outcome,	while	player	2	earns	-2.	If	player	2	escalates	and	player	1	backs
down,	the	situation	is	reversed,	and	player	1	earns	-2	while	player	2	earns	1.
Finally,	if	player	1	ultimately	declares	war,	both	sides	suffer	losses	but	save	their
reputations,	giving	both	a	payoff	of	-1.

Since	this	is	an	extensive	form	game,	we	must	find	its	subgame	perfect
equilibrium.	We	could	do	this	in	two	ways.	First,	we	could	convert	the	extensive
form	game	into	a	matrix,	find	the	game’s	Nash	equilibria,	and	then	work	through
the	logic	of	the	game	tree	to	see	if	any	of	those	Nash	equilibria	rely	on	incredible
threats.

Alternatively,	we	could	apply	backward	induction,	which	the	easiest	way	to
solve	extensive	form	games	when	there	are	no	simultaneous	moves.	Since	the
escalation	game	has	no	simultaneous	moves,	we	will	opt	for	backward	induction
here.

So	what	is	backward	induction?	As	the	name	suggests,	when	we	use
backward	induction,	we	start	at	the	end	of	the	game	and	work	our	way	to	the
beginning.	Specifically,	we	see	what	the	players	would	want	to	do	at	the	end	of



the	game	and	take	that	information	to	the	previous	step	to	see	how	players
should	rationally	respond	to	those	future	moves.	After	all,	the	smartest	move
today	depends	on	what	will	happen	tomorrow.	We	repeat	this	process	until	we
arrive	at	the	beginning	of	the	game.

Although	that	may	sound	complicated,	backward	induction	is
straightforward	in	practice.	Let’s	use	the	escalation	game	to	illustrate	the
process.	We	begin	at	the	end	of	the	game,	when	player	1	decides	between	war
and	backing	down	after	player	2	escalates	the	conflict:

If	player	1	declares	war,	he	earns	-1.	If	he	backs	down,	he	earns	-2.	Since	-1
is	greater	than	-2,	we	know	player	1	declares	war	if	he	has	the	opportunity.

Now	consider	player	2’s	decision	between	conceding	and	escalating.	She
knows	that	player	1	will	declare	war	if	she	escalates.	As	such,	she	can
functionally	ignore	the	outcome	where	player	1	backs	down,	as	she	knows	that
he	will	never	play	that	strategy.	Consequently,	she	can	focus	her	decision
between	the	following	two	outcomes:

Essentially,	we	erased	the	back	down	outcome	from	the	game.	This	allows
us	to	concentrate	on	player	2’s	decision	between	conceding	and	escalating,
knowing	that	player	1	will	follow	with	war.	If	she	concedes,	she	earns	-2.	If	she
escalates,	player	1	declares	war,	and	player	2	earns	-1.	Since	-1	beats	-2,	player	2
escalates.

Knowing	that,	we	can	move	to	the	beginning	of	the	game	where	player	1
chooses	whether	to	accept	the	status	quo	or	issue	a	threat.	We	know	that	if	he
threatens	player	2,	she	responds	by	escalating,	which	causes	him	to	declare	war.
As	such,	player	1’s	choices	can	lead	to	the	following	outcomes:



If	he	accepts	the	status	quo,	he	earns	0.	If	he	threatens	player	2,	she
escalates,	and	he	declares	war,	ultimately	earning	him	-1.	Since	0	is	greater	than
-1,	player	1	accepts	the	status	quo	and	the	game	ends.

	



2.2.1:	How	Not	to	Write	a	Subgame	Perfect	Equilibrium
Differentiating	between	the	outcome	of	an	extensive	form	game	and	its

subgame	perfect	equilibrium	is	extremely	important.	The	outcome	is	what
actually	occurs	when	the	players	work	their	way	through	the	game.	The	SPE	is	a
complete	and	contingent	plan	of	action	for	all	players.

You	might	be	tempted	to	say	the	SPE	of	the	escalation	game	is	for	player	1
to	accept	the	status	quo.	This	is	the	outcome	of	the	game.	It	is	not	the	subgame
perfect	equilibrium.	Why	not?	Subgame	perfection,	at	its	core,	is	the	study	of
credible	threats.	Consequently,	we	want	to	know	which	threats	in	the	escalation
game	are	credible	and	which	are	not.	To	say	that	“player	1	accepts	the	status	quo
is	the	SPE	of	the	escalation	game”	tells	us	nothing	about	the	credibility	of	player
2’s	threat	to	escalate	or	player	1’s	threat	to	declare	war.	It	is	also	not	a	complete
and	contingent	plan	of	action,	as	it	does	not	inform	us	what	would	happen	if
player	1	had	to	choose	between	backing	down	and	war.	A	SPE	must	tell	us	all	of
this	information.

Put	differently,	player	1	accepts	the	status	quo	at	his	initial	decision	node
because	player	2	will	escalate	if	he	issues	a	threat	and	because	this	ultimately
causes	him	to	declare	war.	Since	the	status	quo	beats	war,	he	would	rather	accept
the	status	quo.	As	such,	we	say	that	<(accept,	war),	escalate>	is	the	SPE.	This
tells	us	that	player	1	chooses	accept	and	war	at	his	two	decision	nodes,	while
player	2	selects	escalate	at	hers.

In	contrast,	merely	saying	that	player	1	accepts	the	status	quo	does	not	tell	us
why	this	choice	is	rational	for	him.	Since	subgame	perfection	is	the	study	of
credible	threats,	we	need	to	know	that	information.	As	such,	the	SPE	must	list
the	optimal	move	at	all	decision	nodes	regardless	of	whether	the	players	actually
reach	those	nodes	when	they	play	their	equilibrium	strategies.

On	the	other	hand,	saying	that	“in	the	SPE,	player	1	accepts	the	status	quo,
and	the	game	ends”	is	accurate.	Notice	that	the	statement	is	not	expressing	the
SPE	but	rather	describing	the	outcome.	As	long	as	we	are	describing	outcomes,
we	do	not	need	to	know	what	would	occur	off	the	equilibrium	path	of	play.	But
as	soon	as	we	start	discussing	what	the	equilibrium	itself	is,	we	need	all	of	that
information.
	



2.2.2:	Practice	with	Backward	Induction
Since	backward	induction	works	on	any	extensive	form	game	that	does	not

have	a	simultaneous	move,	we	ought	to	practice	a	bit	more	with	it	before	moving
on	to	other	topics.	Let’s	use	it	to	see	what	happens	when	we	turn	some	of	the
matrix	games	from	last	chapter	into	sequential	move	games.	Let’s	start	with	the
stag	hunt:

Here,	player	1	begins	by	choosing	to	hunt	a	stag	or	hunt	a	hare.	If	he	hunts	a
stag,	player	2	sees	this	and	chooses	whether	to	hunt	a	stag	or	hunt	a	hare.
Similarly,	if	he	hunts	a	hare,	player	2	sees	this	and	chooses	whether	to	hunt	a
stag	or	hunt	a	hare.

For	this	game,	notice	that	we	have	differentiated	player	2’s	moves	depending
on	what	player	1	chooses.	Specifically,	if	player	1	played	S,	player	2	chooses
between	S	and	H.	But	if	player	1	played	H,	player	2	chooses	between	s	and	h.
Alternating	between	capital	and	lower	case	letters	allows	us	to	differentiate
between	these	strategies,	since	S	(hunting	a	stag	if	player	1	hunted	a	stag)	is
fundamentally	different	from	s	(hunting	a	stag	when	player	1	hunted	a	hare).

The	stag	hunt	also	includes	a	new	obstacle.	Selten’s	game	and	the	escalation
game	both	had	a	single	final	possible	decision.	Here,	there	are	two	possible	final
decisions,	depending	on	what	player	1	selected:

When	we	applied	backward	induction	to	the	escalation	game,	we	knew	we
had	to	start	with	player	1’s	decision	to	back	down	or	declare	war.	How	do	we
select	between	the	two	possible	end	games	of	the	stag	hunt?

Fortunately,	the	choice	is	irrelevant.	We	can	start	at	any	end	of	the	game	and
work	our	way	backward	until	we	cannot	go	further.	Then	we	switch	to	a
different	end	of	the	game	and	work	our	way	backward	until	we	cannot	go
further.	We	repeat	this	as	many	times	as	necessary	until	we	have	solved	the
game.

Let’s	illustrate	this	process	using	the	stag	hunt.	Since	player	2’s	decision
between	s	and	h	is	a	terminal	node,	let’s	start	there:



Player	2	knows	player	1	is	hunting	a	hare.	If	she	selects	s,	she	fails	to	capture
the	stag	and	earns	0.	If	she	selects	h,	the	players	split	the	hares,	and	she	earns	1.
Since	1	beats	0,	she	chooses	h.	If	we	erase	s	from	the	game,	we	end	up	with	this:

With	the	escalation	game,	we	could	just	go	to	the	previous	decision	node	and
decipher	that	player’s	optimal	decision.	However,	if	we	tried	solving	for	player
1’s	move	here,	we	would	run	into	a	problem.	If	he	selects	H,	we	know	that
player	2	plays	h	as	well.	However,	if	he	chooses	S	instead,	we	do	not	yet	know
whether	player	2	will	hunt	a	stag	or	a	hare.	As	such,	we	have	to	work	our	way
back	up	from	that	terminal	node	before	we	can	solve	for	player	1’s	strategy.

So	suppose	player	1	hunts	a	stag.	Player	2	faces	the	following	decision:

Player	2	knows	player	1	is	hunting	a	stag.	If	she	selects	S,	they	capture	the
stag,	and	she	earns	3.	If	she	selects	H,	she	earns	2.	Since	3	beats	2,	she	chooses
S.	If	we	erase	H	from	the	game,	we	end	up	with	this:

Now	player	1	knows	exactly	what	player	2	does	after	he	moves.	If	he	plays
S,	she	moves	S,	and	he	earns	3.	On	the	other	hand,	if	he	chooses	H,	she	selects	h
as	well,	and	he	earns	1.	Since	3	beats	1,	player	1	plays	S.



Therefore,	the	game’s	SPE	is	<S,	(Sh)>;	in	the	SPE,	both	players	hunt	a	stag.
Effectively,	the	sequential	nature	of	the	game	solves	the	coordination	problem.
In	the	original	stag	hunt,	<hare,	hare>	was	a	Nash	equilibrium.	But	since	player
1	can	establish	that	he	is	hunting	a	stag,	player	2	never	has	a	reason	to	play	hare
in	response.

Sequentiality	also	resolves	the	coordination	problem	in	battle	of	the	sexes:

Let’s	start	at	player	2’s	decision	between	ballet	and	fight	after	player	1	has
gone	to	the	ballet:

Since	2	beats	0,	player	2’s	optimal	strategy	is	to	play	B.	Erasing	F	yields	the
following:

We	cannot	yet	solve	for	player	1’s	optimal	strategy	since	we	do	not	yet
know	how	player	2	will	respond	if	he	goes	to	the	fight.	So	let’s	analyze	that
contingency:

Here,	she	earns	1	for	f	and	0	for	b.	As	such,	she	chooses	f.	If	we	erase	b,	we
are	left	with	the	following:



Now	player	1	knows	if	he	goes	to	the	fight,	she	goes	there	as	well,	and	he
earns	2.	In	contrast,	if	he	elects	to	see	the	ballet,	she	heads	there	too,	and	he	only
earns	1.	Since	2	beats	1,	he	goes	to	the	fight.

Thus,	the	game’s	SPE	is	<F,	(Bf)>;	in	the	SPE,	both	players	meet	at	the
fight.	Unlike	in	the	simultaneous	move	battle	of	the	sexes,	this	version	of	the
game	has	a	single	equilibrium.	Again,	the	sequentiality	of	the	game	has	resolved
the	coordination	problem	between	the	players.

Indeed,	player	1	actually	exploits	his	first	mover’s	advantage.	In
simultaneous	move	game,	<ballet,	ballet>	was	also	a	Nash	equilibrium,	meaning
player	2	could	arrive	at	her	most	preferred	outcome.	Here,	that	is	not	possible.
Player	1	simply	goes	to	his	most	preferred	form	of	entertainment,	knowing	that
player	2	must	follow.

First	movers	do	not	always	have	an	advantage,	though.	Consider	the
weighed	game	of	matching	pennies	that	we	used	to	introduce	the	mixed	strategy
algorithm:

To	begin,	suppose	player	1	played	U:

Player	2	can	choose	L	and	earn	-3	or	play	R	and	earn	2.	Naturally,	she	will
play	R	in	this	contingency.

Let’s	switch	over	to	the	other	terminal	node	and	suppose	player	1	played	D:



This	time,	she	earns	1	for	l	and	0	for	r.	As	such,	she	picks	l.
Consequently,	player	1’s	decision	is	between	the	following:

Up	is	worth	-2,	while	down	nets	him	-1.	Consequently,	he	selects	down.
Since	player	2	moves	last,	she	can	always	counteract	player	1’s	move.	Knowing
this,	all	he	can	do	is	minimize	his	losses.	Here,	that	means	taking	down	and	-1
over	up	and	-2.	Therefore,	the	SPE	is	<D,	(Rl)>.

While	you	absolutely	must	know	how	to	use	backward	induction	if	you	are
serious	about	game	theory,	do	not	worry	if	you	are	not	yet	comfortable	with	it.
In	the	remaining	lessons,	we	will	look	at	plenty	of	games	that	we	can	solve	with
backward	induction.

	



Takeaway	Points
1)	Backward	induction	finds	subgame	perfect	equilibria	by	finding	how
players	optimally	behave	at	the	end	of	the	game	and	uses	that	information	to
find	how	players	optimally	behave	at	the	beginning	of	the	game.
2)	A	subgame	perfect	equilibrium	is	a	complete	and	contingent	plan	of	action.
It	must	state	what	all	players	would	do	at	a	particular	decision	node	regardless
of	whether	they	actually	reach	that	node	in	equilibrium.



Lesson	2.3:	Multiple	Subgame	Perfect	Equilibria
One	of	the	reasons	we	like	using	backward	induction	is	that	it	generally

produces	a	unique	subgame	perfect	equilibrium.	However,	some	games	break
that	rule.	This	section	covers	how	these	exceptions	come	up	and	why	they	can
lead	to	problems.
	



2.3.1:	The	Ultimatum	Game
Let’s	start	with	a	simple	example.	Player	1	has	some	good	worth	a	value	of	2

and	has	to	bargain	with	player	2	over	how	to	divide	it.	He	can	offer	to	split	the
good	or	he	can	attempt	to	take	all	of	it.	However,	player	2	can	reject	either
proposal.	If	she	does,	both	receive	nothing.

Here	is	the	game	tree:	
This	is	a	simple	version	of	the	ultimatum	game.	Player	1	begins	by	making

an	ultimatum—split	or	take.	If	he	splits,	player	2	accepts	or	rejects	his	division.
If	she	accepts,	they	both	earn	1;	otherwise,	they	both	earn	0.	On	the	other	side,	if
he	takes,	player	2	allows	that	to	happen	or	spurns	player	1’s	move.	If	she	allows
it,	player	1	earns	2	while	she	earns	0.	But	if	she	spurns	him,	they	both	earn	0.

There	are	no	simultaneous	moves	here,	so	let’s	use	backward	induction.

First,	consider	player	2’s	choice	if	player	1	splits:	
If	player	2	accepts,	she	earns	1.	If	she	rejects,	she	earns	0.	Since	1	beats	0,

player	2	always	accepts	if	player	1	splits.

Now	let’s	go	to	the	other	side	of	the	game	tree:	
Regardless	of	what	player	2	does	here,	she	earns	0.	Thus,	in	equilibrium,	she

can	do	three	things:	play	spurn	as	a	pure	strategy,	play	allow	as	a	pure	strategy,
or	mix	between	allow	and	spurn	according	to	any	probability	distribution.	All	of
these	choices	generate	the	same	payoff	and	are	therefore	optimal	for	her	in	this
subgame.

Thus,	we	have	to	consider	all	three	cases	when	we	move	backward	a	step.

Let’s	begin	by	assuming	she	always	allows:	
If	player	1	splits,	player	2	accepts,	and	he	earns	1.	If	player	1	takes,	player	2



allows,	and	he	earns	2.	Since	2	beats	1,	player	1	takes.	So	if	player	2	always
allows	after	player	1	takes,	the	subgame	perfect	equilibrium	is	<take,	(accept,
allow)>.

But	notice	what	happens	if	player	2	always	spurned	instead:	

Player	1	still	ultimately	earns	1	if	he	splits.	However,	if	he	takes,	player	2
spurns,	and	he	earns	0.	Since	1	beats	0,	player	1	splits.	Thus,	if	player	2	always
spurns	after	player	1	takes,	the	subgame	perfect	equilibrium	is	<split,	(accept,
spurn)>.

So	far,	we	have	found	two	distinctly	different	subgame	perfect	equilibria.
But	it	gets	worse	once	we	consider	what	happens	when	player	2	mixes	between

allow	and	spurn:	
Once	again,	player	2	accepts	if	player	1	splits,	giving	player	1	a	payoff	of	1.

If	he	takes,	player	2	allows	with	probability	σallow	and	spurns	with	probability	1	–
σallow.	When	she	allows,	he	earns	2;	when	she	spurns,	he	earns	0.	Thus,	his
expected	utility	for	taking	is:	EUtake	=	(σallow)(2)	+	(1	–	σallow)(0)	EUtake	=	2σallow
Player	1’s	expected	utility	for	playing	split	is	1.	Therefore,	he	must	play	take	in
SPE	if	2σallow	is	greater	than	1:	EUsplit	=	1
EUtake	=	2σallow	EUtake	>	EUsplit	2σallow	>	1
σallow	>	1/2
	

Thus,	if	player	2	allows	more	than	half	of	the	time,	player	1	must	always
take,	as	his	expected	utility	for	taking	is	always	greater	than	1	in	that	instance.
As	such,	for	any	σallow	>	1/2,	the	SPE	is	<take,	(accept,	σallow	>	1/2)>.

But	there	are	also	situations	in	which	player	2	mixes	and	player	1	must
optimally	split:	EUsplit	=	1
EUtake	=	2σallow	EUtake	<	EUsplit	2σallow	<	1
σallow	<	1/2



	
Thus,	if	player	2	allows	less	than	half	of	the	time,	player	1	must	always	split,

as	his	expected	utility	for	taking	is	always	less	than	1	in	that	instance.	As	such,
for	any	σallow	<	1/2,	the	SPE	is	<split,	(accept,	σallow	<	1/2)>.

Finally,	note	that	if	player	2’s	mixed	strategy	is	exactly	σallow	=	1/2,	player	1
is	indifferent	between	splitting	and	taking:	EUsplit	=	1
EUtake	=	2σallow	EUtake	=	EUsplit	2σallow	=	1
σallow	=	1/2

	
That	being	the	case,	player	1	can	mix	according	to	any	probability

distribution	between	splitting	and	taking;	regardless	of	what	he	does,	his
expected	utility	equals	1.	Thus,	for	σallow	=	1/2,	the	SPE	is	<σsplit,	(accept,	σallow	=
1/2)>,	where	σsplit	can	be	any	probability.

On	substantive	grounds,	any	SPE	in	which	player	2	allows	player	1	to	take
seems	implausible.	Because	player	2	is	indifferent	between	allowing	and
spurning,	she	has	a	credible	threat	to	spurn.	Note	that	if	she	plays	spurn	in	an
SPE,	player	1	must	split	at	the	beginning	of	the	game.	After	he	splits,	she
accepts,	and	she	walks	away	with	1	as	her	payoff,	which	is	the	best	outcome	she
could	possibly	receive.	Consequently,	it	would	be	bizarre	if	player	2	did	not
force	player	1	to	split.	Yet	the	aforementioned	cases	in	which	player	2	allows
with	positive	probability	are	still	technically	subgame	perfect	equilibria.

The	reason	this	game	has	multiple	equilibria	is	that	player	2’s	payoffs	are	the

same	for	each	of	her	choices	at	one	of	the	decision	nodes:	
This	allows	player	2	to	choose	either	pure	strategy	or	mix	in	any	way

between	them.	Absent	that,	she	would	have	to	pick	a	single	strategy	with
certainty,	thereby	bringing	us	back	to	a	unique	SPE.
	



2.3.2:	Multiple	Equilibria,	Same	Outcome
The	last	example	had	different	outcomes	depending	on	which	subgame

perfect	equilibrium	the	players	selected.	However,	there	are	trivial	cases	with	a
unique	equilibrium	outcome	to	the	game	but	multiple	subgame	perfect
equilibria.	Here	is	an	example:

Note	that	player	2	is	indifferent	between	her	two	strategies	if	player	1	moves
down:

Regardless	of	player	2’s	choice,	she	earns	3.	Therefore,	she	can	play	left	as	a
pure	strategy,	play	right	as	a	pure	strategy,	or	mix	freely	between	left	and	right.

However,	player	1	will	never	let	player	2	make	a	move:

If	player	1	moves	down,	then	the	best	possible	payoff	he	can	finish	with	is	2.
In	contrast,	if	he	plays	up,	he	earns	4.	Thus,	in	the	SPE,	player	1	plays	up	and
player	2	adopts	any	strategy	she	wishes.

	



2.3.3:	When	There	Must	Be	a	Unique	SPE
In	a	sequential	game	with	no	simultaneous	moves,	if	an	individual’s	payoffs

are	different	for	every	outcome,	and	this	is	true	for	all	individuals	in	the	game,
backward	induction	must	yield	a	unique	solution.	For	example,	suppose	a	game
has	three	possible	outcomes,	player	1’s	payoffs	for	these	outcomes	are	-1,	2,	and
5,	and	player	2’s	payoffs	for	these	outcomes	are	2,	3,	and	9.	-1,	2,	and	5	are	all
distinct	numbers.	Likewise,	so	are	2,	3,	and	9.	Therefore,	at	every	individual
decision	node,	each	player	has	a	single	optimal	decision,	and	the	SPE	will	be
unique.

As	this	example	also	shows,	it	does	not	matter	if	the	players	have	a	common
payoff.	In	this	case,	both	players	can	possibly	earn	2.	Nevertheless,	multiple
equilibria	are	not	possible,	as	that	would	require	player	1	to	have	two	separate
outcomes	that	yield	him	2	or	player	2	to	have	two	separate	outcomes	that	yield
her	2.	As	long	as	the	duplicate	payoff	is	spread	around	to	different	players,	the
SPE	is	unique.

Why	is	this	the	case?	For	a	player	to	be	able	to	choose	optimally	among
more	than	one	strategy,	his	expected	utility	must	be	the	same	for	all	of	those
outcomes.	However,	if	his	payoffs	are	all	different,	then	he	cannot	be	indifferent.
Exactly	one	of	those	choices	must	be	optimal	for	him,	and	he	must	make	that
choice	in	equilibrium.
	



2.3.4:	Multiple	Equilibria	with	Simultaneous	Moves
One	caveat	to	this	rule	is	that	we	must	use	backward	induction	on	the	game,

so	the	game	must	be	sequential	all	the	way	through.	If	a	single	simultaneous
decision	exists	in	the	game	tree,	multiple	SPE	may	exist	even	if	each	payoff	is

unique.	Here	is	an	example:	
Player	1	begins	the	game	by	staying	or	going.	If	he	goes,	the	players	face	off

in	the	weighted	matching	pennies	game	that	we	used	to	introduce	the	mixed
strategy	algorithm.	If	he	stays,	the	game	ends	and	he	earns	-1/3	and	she	earns	4.

This	game	also	presents	a	new	problem	in	that	we	cannot	use	backward
induction	here.	Backward	induction	requires	every	decision	node	to	have	a
unique	history.	Here,	however,	when	player	1	reaches	his	information	set	where
he	chooses	between	up	and	down,	he	does	not	know	whether	player	2	selected
left	or	right.	So	we	cannot	start	at	the	bottom	and	work	our	way	up.

Fortunately,	the	solution	is	to	utilize	the	subgame	part	of	subgame	perfect
equilibrium.	Rather	than	working	from	the	very	bottom,	we	work	from	the	last
decision	in	the	game	with	a	unique	history.	We	call	this	a	subgame.

Note	this	means	we	cannot	use	player	1’s	last	move	as	the	start	of	the

subgame:	
This	is	an	invalid	subgame.	Player	1	does	not	know	exactly	where	he	is—

player	2	played	left	or	right,	but	player	1	does	not	directly	observe	which.
Moreover,	if	player	2	moved	left,	player	1	should	move	up;	yet	if	player	2	went
right,	player	1	should	go	down.	Backward	induction	cannot	help	us	here.

However,	when	player	2	chooses	left	or	right,	she	knows	exactly	what	has
happened	before—namely,	player	1	chose	go.	So	we	begin	by	analyzing	that

subgame:	
As	previously	mentioned,	this	is	merely	a	simultaneous	move	game	identical



to	the	weighed	matching	pennies	game	from	earlier.	Thus,	to	solve	this	subgame,

we	find	the	Nash	equilibria	of	its	matrix:	
From	Lesson	1.5,	we	know	that	player	1	mixes,	playing	up	with	probability

1/6	and	down	with	probability	5/6.	Player	2	also	mixes,	playing	left	with
probability	1/3	and	right	with	probability	2/3.	In	the	mixed	strategy	Nash
equilibrium,	player	1’s	expected	utility	equals	-1/3,	while	player	2’s	equals	1/3.

With	that	information	in	hand,	we	erase	the	subgame	and	replace	it	with

those	payoffs:	
The	remaining	game	is	similar	to	the	other	extensive	form	games	we	have

seen	in	the	past.	At	this	point,	we	merely	find	player	1’s	optimal	strategy.	As	it
turns	out,	he	earns	-1/3	regardless	of	whether	he	chooses	stay	or	go.	As	such,	he
can	select	either	as	a	pure	strategy	or	play	any	mixture	between	the	two.	Thus,
we	must	write	out	three	different	types	of	SPE.	In	the	first,	player	1	goes	as	a
pure	strategy,	giving	us	an	SPE	of	<(Go,	σup	=	1/6	),	σleft	=	1/3>.	In	the	second,
player	1	stays	as	a	pure	strategy.	Although	the	players	never	play	the	weighed
matching	pennies	subgame,	we	still	must	list	their	mixtures	for	that	subgame	in
the	SPE.	Therefore,	we	write	that	SPE	as	<(Stay,	σup	=	1/6	),	σleft	=	1/3>.	Finally,
<(σgo	,	σup	=	1/6	),	σleft	=	1/3>	represents	the	cases	where	player	1	mixes	between
stay	and	go,	where	σgo	equals	any	number	between	0	and	1,	not	including	0	and
1.

Notice	multiple	subgame	perfect	equilibria	exist	despite	how	each	player’s
payoffs	are	unique	for	that	player.	Specifically,	player	1	can	earn	-2,	-1,	-1/3,	0,
and	2	depending	on	the	outcome,	while	player	2	can	earn	-3,	0,	1,	2,	and	4
depending	on	the	outcome.	However,	player	1’s	expected	utility	of	the
simultaneous	move	subgame	equals	his	payoff	for	the	outcome	outside	of	that
subgame,	which	leads	to	the	indifference	that	allows	for	multiple	equilibria.

Not	all	extensive	form	games	with	at	least	one	simultaneous	move	have
multiple	SPE.	Indeed,	the	previous	game	required	player	1’s	payoff	for	the	stay
outcome	to	be	exactly	-1/3	for	multiple	equilibria	to	exist.	Had	his	payoff	for
staying	been	anything	higher,	his	optimal	strategy	would	be	to	stay,	as	playing
the	weighed	matching	pennies	game	has	an	expected	utility	of	-1/3.	Similarly,
had	the	payoff	for	staying	been	anything	lower,	his	optimal	strategy	would	be	to



play	the	weighed	matching	pennies	game.
	



Takeaway	Points
1)	If	each	player’s	payoffs	are	unique	for	that	player	and	the	game	has
simultaneous	moves,	the	game	has	a	unique	SPE.
2)	If	a	player	has	duplicate	payoffs	or	the	game	has	a	simultaneous	move,	the
game	could	have	multiple	SPE.



Lesson	2.4:	Making	Threats	Credible
We	often	think	that	keeping	our	options	open	is	the	most	prudent	course	of

action.	After	all,	if	you	limit	your	future	choices,	you	might	not	be	able	to
optimally	respond	to	competing	behavior.

However,	that	theory	falls	flat	when	we	think	about	credible	threats.	This
lesson	shows	why	players	might	want	to	intentionally	constrain	their	future
actions.	There	are	two	different	ways	to	accomplish	this.	First,	players	can	burn
bridges—that	is,	make	a	certain	future	course	of	action	impossible.	Second,	they
can	tie	their	hands—that	is,	leave	a	future	option	open	but	make	it	so	extremely
undesirable	that	they	would	never	choose	to	pursue	it.	Regardless	of	the	specific
method,	burning	bridges	and	tying	hands	allows	players	to	make	their	threats
credible	and	in	turn	increase	their	equilibrium	payoffs.
	



2.4.1:	Burning	Bridges
The	bridge-burning	story	is	the	classic	example.	Although	Thomas	Schelling

most	frequently	receives	attribution	for	this	tale,	similar	parables	probably
predate	written	history.

The	story	goes	as	follows.	Two	countries	are	at	war.	A	small	island	sits
between	the	two.	Each	country	has	only	one	bridge	that	can	access	it.	Although
valuable,	the	island	is	not	worth	fighting	over;	each	side	would	rather	concede
the	territory	to	its	opponent	than	fight	a	battle	over	the	land.

The	first	country	crosses	its	bridge	to	occupy	the	island.	Afterward,	the
soldiers	decide	whether	to	burn	the	bridge	behind	them.	The	second	country
decides	whether	to	invade.	If	the	first	country	has	no	bridge	to	use	as	an	escape
route,	it	must	fight	a	battle.	However,	if	the	bridge	still	stands,	the	first	country
decides	whether	to	fight	or	retreat.

Here	is	the	game	tree:

We	can	solve	this	game	using	backward	induction.	Let’s	begin	with	player
1’s	decision	to	fight	or	retreat:

Since	0	beats	-1,	player	1	retreats.	This	option	is	only	available	to	player	1
because	he	did	not	burn	the	bridge	at	the	start	of	the	game.

Let’s	move	back	to	player	2’s	decision	whether	to	challenge	player	1	for
control	over	the	island:



Player	2	sees	that	player	1	left	the	bridge	unburned,	so	she	knows	he	retreats
if	challenged.	Eventual	retreat	from	player	1	generates	a	payoff	of	1	for	player	2.
Meanwhile,	challenging	gives	her	0.	Since	1	beats	than	0,	player	2	challenges	if
player	1	does	not	burn	the	bridge.

Now	let’s	switch	to	the	side	of	the	tree	where	player	1	burns	the	bridge:

If	she	invades,	player	1	cannot	retreat	since	he	burned	his	escape	route,	and
thus	the	players	end	up	in	a	battle.	Player	2	earns	-1	for	that	outcome.
Alternatively,	she	could	not	invade	the	island	and	concede	control	of	it	to	player
1.	She	earns	0	for	that	outcome.	Since	0	beats	-1,	she	opts	not	to	invade.

We	can	now	analyze	player	1’s	initial	decision	whether	to	burn	the	bridge:

If	player	1	burns	the	bridge,	player	2	does	not	invade,	and	player	1	earns	a
payoff	of	1.	If	he	does	not	burn	it,	player	2	challenges	him	for	control	over	the
island,	which	forces	player	1	to	retreat.	Player	1	earns	0	for	this	outcome.	Since
1	beats	0,	player	1	optimally	begins	the	game	by	burning	the	bridge.

Therefore,	the	SPE	is	<(burn,	retreat),	(not	invade,	challenge)>.	Strikingly,
player	1	can	make	an	incredible	threat	credible	by	burning	the	bridge;	he	cannot
credibly	threaten	to	fight	for	control	over	the	island,	so	he	puts	himself	into	a
position	where	he	has	no	choice	but	to	do	so	if	player	2	invades.	Player	2	sees
the	credibility	of	this	threat	and	opts	not	to	walk	into	a	battle	on	the	island.



Absent	the	burned	bridge,	however,	player	1	cannot	commit	to	fighting	over
the	island,	which	prompts	player	2	to	take	control	of	it.
	



2.4.2:	Tying	Hands
A	boss	notices	that	one	of	his	unscrupulous	employees	has	been	stealing

company	materials	lately.	He	values	honesty	in	himself	and	his	employees,	but
the	stolen	property	was	not	valuable.	Consequently,	the	boss	prefers	keeping	her
around	rather	than	having	to	hire	and	train	a	replacement.	Nevertheless,	he
would	ideally	like	stop	her	from	stealing.

At	the	company	meeting	today,	he	is	thinking	about	issuing	a	warning:	the
next	person	caught	stealing	any	company	property	will	be	immediately	fired.
Should	he	issue	such	a	warning?

Here	is	the	game	tree:

Let’s	begin	the	analysis	on	the	left	side.	Suppose	the	boss	issued	no	warning
and	an	employee	stole	something.	How	does	the	boss	respond?

Ignoring	pays	0;	firing	pays	-1.	Since	the	stolen	good	is	not	valuable,	the
boss	ignores	the	theft	in	this	situation.

Now	let’s	move	back	to	the	employee’s	decision	to	steal	or	not:

If	the	employee	steals	something,	the	boss	ignores	the	theft,	and	she	earns	1.
If	she	stops	stealing,	she	earns	0.	Since	1	is	greater	than	0,	she	steals.

Let’s	switch	to	the	other	side	of	the	game	tree.	Suppose	the	boss	issued	a
warning	and	an	employee	stole	something	anyway:



This	time,	the	boss	follows	through	and	fires	the	employee.	He	values	his
honesty	and	reputation;	if	he	does	not	fire	the	employee,	he	will	develop	a
reputation	of	being	a	liar.	Consequently,	he	earns	-2	for	ignoring	the	theft	and	-1
for	firing	the	employee.	Since	-1	is	greater	than	-2,	he	fires	her.

Now	we	go	back	to	the	employee’s	decision	to	steal	from	the	office	if	the
boss	warns	her	not	to:

If	the	employee	tests	her	boss’s	word,	the	boss	fires	her,	and	she	earns	-1.
However,	if	she	quits	stealing,	she	earns	0.	As	such,	she	quits.

With	that,	we	can	now	find	the	boss’s	optimal	decision	to	begin	the	game:

If	the	boss	issues	a	warning,	his	employee	quits	stealing,	and	he	earns	1.	If
he	does	not	issue	a	warning,	the	employee	steals,	he	ignores	it,	and	he	earns	0.
Since	1	beats	0,	he	issues	the	warning.

Thus,	the	subgame	perfect	equilibrium	is	<(warning,	ignore,	follow
through),	(steal,	quit)>.	In	the	SPE,	the	boss	warns	his	employee,	and	she	does
not	steal	again.

	



Takeaway	Points
1)	Subgame	perfect	equilibrium	is	the	study	of	credible	threats.
2)	Sometimes	players	can	gain	by	constraining	their	future	actions	to	make
threats	credible.	This	deters	the	other	player	from	taking	aggressive	actions
they	would	have	otherwise.



Lesson	2.5:	Commitment	Problems
Suppose	you	are	a	college	graduate	from	San	Diego,	California,	and	you

were	recently	admitted	to	a	political	science	PhD	program	in	Rochester,	New
York.	Naturally,	you	pack	up	all	of	your	earthly	belongings	into	your	compact
Honda	Civic,	cover	everything	with	an	old	sheet	to	shield	the	items	from	the
prying	eyes	of	a	potential	thief,	and	embark	on	a	cross-country	adventure	to	your
new	home.

But	trouble	strikes	halfway	there.	As	you	are	driving	through	El	Paso,	Texas,
police	lights	flash	behind	you.	You	pull	over	and	roll	down	your	window.	The
officer	explains	that	El	Paso	is	in	the	middle	of	a	drug	war	and	that	you	appear
suspicious,	coming	from	California	in	a	vehicle	filled	with	unknown	objects
under	a	sheet.	He	politely	requests	to	conduct	a	search	of	your	vehicle.

You	tell	him	you	are	a	graduate	student	moving	from	San	Diego	to
Rochester	and	object	to	such	a	search,	noting	that	he	has	no	legal	right	to	look
through	your	belongings.

Begrudgingly,	the	officer	accepts	that	he	cannot	search	your	vehicle	without
permission.	However,	he	notes	that	he	could	call	in	a	K-9	unit	to	sniff	around	the
vehicle.	But	the	K-9	unit	is	stationed	a	half	hour	away,	so	it	would	take	a	while
for	it	to	arrive.	He	suggests	a	compromise:	you	allow	him	to	conduct	a	quick
search,	and	you	can	be	on	your	way	in	a	few	minutes.	He	stresses	that	the	quick
search	will	be	better	than	the	K-9	for	both	parties,	as	neither	of	you	will	have	to
wait	in	the	hot	summer	sun.

Should	you	take	the	officer’s	offer?
Having	studied	game	theory,	you	mentally	draw	out	the	game	tree.	Your

move	is	first:	you	can	either	demand	the	K-9	unit	or	allow	the	officer	to	search.
If	you	allow	the	search,	the	officer	decides	between	conducting	a	quick	search	as
he	originally	offered	or	reneging	on	that	agreement	and	conducting	an	extensive
search.	You	most	prefer	a	quick	search	and	least	prefer	an	invasive	extensive
search.	Meanwhile,	the	police	officer	would	most	like	to	conduct	an	extensive
search	to	ensure	you	are	not	carrying	drugs	but	least	prefers	waiting	a	long	time
for	the	K-9	to	arrive.

That	game	tree	looks	like	this:



This	is	a	simple	sequential	game	of	complete	information.	Backward
induction	swiftly	solves	it.	Begin	at	the	end	of	the	game,	when	the	officer
decides	what	type	of	search	to	conduct:

Since	3	beats	2,	he	chooses	an	extensive	search.	As	such,	we	remove	quick
search	from	the	game	and	see	how	you	should	play	at	the	beginning,	knowing
that	the	officer	will	conduct	an	extensive	search:

If	you	request	the	K-9,	you	earn	2.	If	you	allow	a	search,	the	officer	chooses
an	extensive	search,	and	you	earn	1.	Since	2	beats	1,	you	choose	K-9.	Therefore,
the	SPE	of	this	game	is	<K-9,	Extensive>.

Objectively,	this	is	an	unfortunate	outcome.	Let’s	compare	the	K-9	outcome
to	the	quick	search	outcome:

At	the	beginning	of	the	story,	the	officer	told	you	that	a	quick	search	would
be	better	for	both	of	you	than	waiting	for	the	K-9	unit.	He	was	right.	A	quick
search	is	worth	3	for	you,	whereas	waiting	for	the	K-9	is	worth	2.	Meanwhile,	a
quick	search	is	worth	2	for	the	officer,	whereas	waiting	for	the	K-9	is	worth	only
1.



Unfortunately,	the	reason	you	cannot	reach	that	better	outcome	is	because
the	officer	suffers	from	a	commitment	problem.	Both	sides	would	be	better	off	if
the	officer	could	credibly	commit	to	a	quick	search;	you	could	then	allow	a
search	without	worrying	that	he	might	renege.	However,	his	words	carry	no
weight;	once	you	consent	to	a	search,	the	officer	can	choose	any	type	he	wishes.
In	this	game,	he	prefers	to	conduct	an	extensive	search	to	a	quick	search.	And
unlike	in	the	game	with	the	boss	and	his	stealing	employees,	the	officer	does	not
earn	any	benefit	from	maintaining	an	honest	reputation.	As	such,	if	you	allow	a
search,	you	end	up	with	an	extensive	search	and	your	worst	possible	outcome.
Therefore,	you	must	begin	the	game	by	waiting	for	the	K-9.

An	important	element	of	a	commitment	problem	is	the	time	inconsistency
issues	a	player	faces.	Notice	what	happens	when	we	reverse	the	order	of	the
moves:

(Note:	Normally,	the	player	who	moves	first	has	the	first	payoff	and	the
player	who	moves	second	has	the	second	payoff.	However,	to	keep	things
consistent	with	the	original	police	search	game,	your	payoffs	still	come	first
here.)

Here,	the	officer	begins	by	choosing	a	quick	or	extensive	search.	This	initial
choice	is	binding.	You	then	decide	whether	he	can	execute	that	type	of	search	or
wait	for	the	K-9.

Let’s	quickly	solve	for	this	game’s	SPE,	starting	with	what	you	should	do
after	the	officer	selects	a	quick	search:

Since	3	beats	2,	you	allow	the	officer	to	conduct	his	search.
Now	suppose	the	officer	chooses	an	extensive	search:



Here,	you	deny	his	search	and	wait	for	the	K-9	unit	to	arrive,	as	2	beats	1.
Knowing	these	two	endgames,	we	can	then	solve	for	the	officer’s	optimal

strategy	to	begin	the	game:

If	the	officer	opts	for	a	quick	search,	you	allow	it,	and	he	earns	2.	But	if	he
opts	for	an	extensive	search,	you	wait	for	the	K-9,	and	he	earns	1.	Since	2	beats
1,	the	officer	selects	a	quick	search.

With	the	order	of	moves	reversed,	the	officer	and	you	arrive	at	the	mutually
better	outcome.	But	since	you	are	stuck	to	the	original	extensive	form	of	the
game,	the	police	officer	cannot	credibly	commit	to	a	quick	search,	and	you	must
wait	for	the	dogs.

The	lesson	here	is	that	preferences	matter	more	than	words.	What	someone
says	they	will	do	in	the	future	may	be	inconsistent	with	what	they	would	want	to
do	once	it	is	time	to	follow	through.	That	is	not	to	say	words	are	completely
irrelevant.	Indeed,	the	boss’s	threat	to	fire	his	employee	worked	in	that	lesson
precisely	because	he	made	an	audible	threat.	However,	the	difference	between
the	stealing	game	and	the	police	game	is	what	happens	when	the	boss	and	the
police	officer	actually	move.	When	the	police	officer	chooses	a	search,	he	wants
to	choose	an	extensive	search	because	it	maximizes	his	chances	of	finding	illegal
materials.	He	does	not	care	if	you	think	he	is	a	liar.	In	contrast,	the	boss	wants	to
follow	through	on	his	threat,	because	he	cares	whether	his	other	employees
believe	he	is	fair	and	honest.	He	has	no	time	inconsistency	problem	because	he
does	not	want	to	be	seen	as	a	liar.

	



2.5.1:	Civil	War
Civil	wars	rarely	end	in	negotiated	settlements;	normally,	the	sides	fight

each	other	until	one	completely	militarily	defeats	the	other.	Commitment
problems	explain	why.

Suppose	some	rebels	are	fighting	a	successful	revolution.	The	dictator	faces
a	dilemma.	He	could	surrender	and	save	his	country	from	a	lot	of	bloodshed,	or
he	can	gamble	and	hope	the	war	turns	in	his	favor.	If	successful,	he	crushes	the
opposition.	If	he	fails,	the	rebel	leaders	take	over	the	country.	At	that	point,	or	if
the	dictator	concedes	at	the	start,	the	new	rebel	government	has	to	decide
whether	to	forgive	the	dictator	or	execute	him.

Let’s	look	at	the	extensive	form	of	the	interaction.	Notice	this	game
introduces	two	new	features:	nature	(N)	and	random	moves:

Despite	the	new	complications,	we	can	use	backward	induction	to	solve	the
game.	As	always,	we	begin	at	the	end:

If	the	rebels	win	the	war,	they	choose	whether	to	forgive	the	dictator	or
assassinate	him.	Since	assassinate	is	worth	7	and	forgive	is	worth	5,	the	rebels
choose	to	assassinate	the	dictator.

Let’s	look	at	the	next	decision	node	up	from	there:

The	N	represents	a	move	by	nature,	something	we	have	not	encountered



before.	However,	such	moves	are	easy	to	handle.	Nature	is	not	a	player;	it
simply	simulates	a	random	movement.	Note	the	.2	below	dictator	wins	and	the	.8
next	the	rebels	win.	These	represent	the	probabilities	that	nature	moves	the	game
into	those	directions.	That	is,	the	dictator	wins	the	war	20%	of	the	time,	and	the
rebels	win	80%	of	the	time.

To	remove	nature	from	the	game	tree,	we	calculate	each	player’s	expected
utilities	for	this	point	of	the	game,	and	replace	nature’s	move	with	those
expected	utilities.	Let’s	start	with	the	dictator:

The	dictator	earns	7	with	probability	.2	and	-13	with	probability	.8.	As	an
equation:

	
EUfight	=	(.2)(7)	+	(.8)(-13)
EUfight	=	1.4	–	10.4
EUfight	=	-9
	

Now	let’s	calculate	the	rebels	expected	utility	if	the	dictator	chooses	to	fight:

The	rebels	earn	-10	with	probability	.2	and	7	with	probability	.8.	As	an
equation:

	
EUfight	=	(.2)(-10)	+	(.8)(7)
EUfight	=	-2	+	5.6
EUfight	=	3.6
	



Next,	we	replace	nature’s	move	with	those	payoffs:

Now	the	game	looks	just	like	any	other	extensive	form	we	have	seen	in	the
past.	To	finish	solving	it,	we	need	to	find	the	rebels’	optimal	move	if	the	dictator
concedes.

The	rebels	earn	8	if	they	release	the	dictator	and	10	if	they	extract	vengeance
by	murdering	him.	Since	10	beats	8,	they	opt	for	murder.

With	all	of	that	backward	induction	completed,	we	are	down	to	the	dictator’s
initial	decision:

If	the	dictator	fights,	he	earns	-9	on	average.	If	he	concedes	the	war,	the
rebels	murder	him	and	he	earns	-10.	Since	-9	beats	-10,	the	dictator	gambles	on
the	war.	Thus,	the	SPE	is	<fight,	(assassinate,	murder)>,	and	the	sides	fight	the
war	to	a	complete	finish.

But	suppose	the	rebels	could	somehow	credibly	commit	to	not	killing	the
dictator	if	he	surrendered:

The	release	outcome	is	better	for	both	players.	The	dictator	is	guaranteed	to
escape	with	his	life,	and	his	payoff	improves	from	-9	to	-5.	The	rebels	minimize
casualties	and	are	assured	victory,	increasing	their	payoff	from	3.6	to	8.

Yet	the	sides	cannot	agree	to	that	outcome.	Once	the	dictator	concedes	the
war,	the	rebels	take	over	power,	leaving	the	dictator’s	life	in	the	hands	of	the



new	government.	Knowing	that	the	he	will	die	in	that	eventuality,	the	dictator
continues	the	war,	even	though	he	wishes	he	could	stop	it	and	escape	with	his
life.
	



2.5.2:	Contracts
Commitment	problems	also	explain	the	usefulness	of	contracts.	Consider	the

economic	dilemma	of	a	supplier	and	a	manufacturer	in	the	lawless	Wild	West—
a	place	without	a	government	to	legally	enforce	contracts	between	two	parties.	A
manufacturer	wishes	to	sell	high	quality	filtered	water	for	$3	per	liter.	It	owns	a
bottle	plant	that	can	produce	bottles	for	$0.50	each,	but	it	does	not	own	a	water
filtration	system.	A	supplier	has	the	necessary	machinery,	but	the	equipment	is
old	and	requires	$1,000	to	repair.	Once	fixed,	the	supplier	can	filter	water	at	a
cost	of	$0.50	per	liter.

Negotiations	originally	stalled	when	the	manufacturer	announced	that	it
wished	to	purchase	a	total	of	1000	liters	of	water	at	$1	per	liter.	The	supplier
calculated	its	net	profit	and	declined	the	offer.	If	it	sold	1000	liters	of	water	to
the	manufacturer	at	$1	per	liter,	they	would	only	take	in	$1000.	However,
filtering	1000	liters	costs	the	supplier	$500	and	the	repairs	cost	$1000.	All	told,
that	amounts	to	$1500	in	costs	for	$1000	in	revenue,	for	a	net	profit	of	-$500.
The	supplier	explained	this	issue	to	the	manufacturer,	and	the	manufacturer
responded	by	upping	its	offer	to	$2	per	bottle.

Suppose	both	sides	solely	want	to	maximize	their	profits.	Should	the
supplier	accept	the	$2	offer?

On	first	pass,	the	answer	appears	to	be	yes.	After	all,	1000	liters	for	$2	a	liter
brings	in	$2000.	After	subtracting	the	$1500	in	costs,	the	supplier	stands	to	make
a	$500	profit.

Yet	the	supplier	should	still	refuse	the	offer.	The	game	tree	explains	why:

The	supplier	(S)	begins	by	repairing	its	machines	or	withdrawing	from	the
market.	If	the	supplier	repairs,	the	manufacturer	(M)	decides	whether	to
purchase	the	liters	of	water	at	the	agreed	upon	$2	per	liter	or	renege	and	only	pay
$1	per	liter.	If	the	manufacturer	only	pays	$1	per	liter,	the	supplier	decides
whether	to	accept	or	reject	the	revised	offer.

Backward	induction	shows	that	the	manufacturer	has	incentive	to	renege	on



the	original	agreement.	To	see	this,	let’s	start	at	the	end	of	the	game,	after	the
supplier	has	made	repairs	and	the	manufacturer	has	offered	only	$1	per	liter:

If	the	supplier	quits,	it	loses	$1000,	which	reflects	the	cost	of	repairs	it	made
at	the	beginning.	If	the	supplier	produces,	it	recoups	$500—the	manufacturer
pays	$1000	for	water	that	only	costs	the	supplier	$500	to	produce.	However,	the
supplier	still	had	to	pay	$1000	to	repair	the	machines	at	the	beginning,	so	the
supplier	loses	$500	overall.	Since	losing	$500	is	better	than	losing	$1000,	the
supplier	produces	in	this	case.

Let’s	take	that	information	and	move	a	step	backward	in	the	game	tree:

If	the	manufacturer	offers	$2	per	liter,	it	makes	$500;	it	sells	$3000	of	water
to	consumers,	but	the	bottles	cost	$500	and	the	manufacturer	has	to	pay	$2000	to
the	supplier	for	the	water.	If	the	manufacturer	offers	$1	per	liter,	the	company
saves	$1000	in	payments	to	the	supplier	and	makes	$1500	instead.	Since	$1500
is	more	than	$500,	the	manufacturer	lowballs	the	supplier	with	an	offer	of	$1.

That	takes	us	to	the	beginning	of	the	game:

If	the	supplier	withdraws	at	the	beginning	of	the	game,	it	makes	nothing.	In
contrast,	if	it	repairs	its	machines,	the	manufacturer	offers	only	$1	per	liter
afterward,	and	the	supplier	accepts	the	offer.	The	supplier	loses	$500	for	this
outcome.	As	such,	the	supplier	withdraws	from	the	market.	Thus,	the	subgame
perfect	equilibrium	is	<(withdraw,	accept),	$1>.

Once	more,	this	is	an	unfortunate	outcome.	Compare	the	equilibrium	result
to	the	outcome	where	the	manufacturer	sticks	to	its	original	offer:



Both	sides	earn	nothing	if	the	supplier	withdraws	immediately.	However,	if
the	manufacturer	follows	through	on	the	$2	offer,	both	sides	make	$500.

The	easiest	way	to	resolve	this	commitment	problem	is	to	move	out	of	the
Wild	West.	In	a	modern	day	city,	the	supplier	and	manufacturer	would	simply
sign	a	binding	contract,	specifying	that	the	manufacturer	will	buy	the	water	at	$2
per	liter.	If	the	manufacturer	reneges,	the	supplier	can	sue	the	manufacturer	in
court	and	recoup	its	lost	profit.	The	Wild	West	offers	no	such	formal	recourse,
which	allows	the	manufacturer	to	exploit	the	supplier	if	it	repairs	its	machines.

Barring	sudden	civilization,	a	couple	creative	methods	can	still	solve	the
problem.	The	manufacturer	could	simply	buy	the	supplying	company.	At	that
point,	the	manufacturer	does	not	need	to	worry	about	purchasing	filtered	water,
as	it	would	own	the	means	to	produce	its	own.	Alternatively,	the	sides	could
bring	in	a	third	party—perhaps	a	trustworthy	bank—to	oversee	the	transaction
and	hold	funds	in	escrow.	Either	of	these	methods	works.	The	supplier	just
cannot	naively	rely	on	the	manufacturer	to	uphold	its	end	of	the	deal.

Once	again,	the	lesson	here	is	that	preferences	and	incentives	matter	more
than	words.	Players	must	have	incentive	to	follow	through	on	their	promises	for
their	words	to	carry	any	weight.

	



Takeaway	Points
1)	Players	encounter	a	commitment	problem	when	equilibrium	payoffs	are
worse	for	both	players	than	a	non-equilibrium	outcome.
2)	Enforceable	contracts	can	resolve	commitment	problems,	but	such
contracts	are	not	always	available.



Lesson	2.6:	Backward	Induction	without	a	Game	Tree
Up	until	now,	we	have	looked	at	some	simple	extensive	form	games.	In

these	games,	each	player	had	a	small	number	of	strategies	to	select	from,	which
made	drawing	out	the	game	trees	a	reasonable	exercise.	The	games	in	this	lesson
are	not	like	that.	Nevertheless,	we	can	still	solve	these	games	through	backward
induction.	The	trick	is	figuring	out	how	to	set	up	the	games	in	such	a	way	that
backward	induction	is	effective.
	



2.6.1:	Pirates!
The	Dread	Pirate	Nash	captures	10	pieces	of	gold	from	the	Selten,	the

Saltwater	Scoundrel.	He	must	decide	how	to	divide	the	coins	among	the	four
other	members	of	the	crew.

According	to	pirate	tradition,	the	captain	proposes	a	division	of	the	coins	to
his	crew.	If	at	least	half	of	the	crew	(captain	included)	accepts	the	offer,	coins
are	divided	according	to	the	proposal,	and	bargaining	ends.	If	a	majority	rejects
the	proposal,	however,	the	captain	must	walk	the	plank.	Afterward,	the	second	in
command	takes	over	as	captain	and	proposes	a	new	division	with	the	same	rules
as	before.	Bargaining	continues	until	all	of	the	pirates	are	dead	or	at	least	half
accept	an	offer.

The	Dread	Pirate	Nash,	Pirate	2,	Pirate	3,	Pirate	4,	and	Pirate	5	primarily
want	to	survive.	Given	their	survival,	they	then	want	to	maximize	their	share	of
the	gold	coins.	And	given	a	certain	allotment	of	coins,	they	prefer	having	that
number	and	having	a	higher	rank	in	the	chain	of	command	than	having	that	same
number	and	a	lower	rank.

Assume	that	voting	is	non-strategic;	that	is,	the	pirates	always	vote
according	to	their	preferences.	(Although	having	strategic	voting	would	not
change	the	game’s	outcome,	it	does	make	an	already	complicated	game	even
more	convoluted.)	Find	the	subgame	perfect	Nash	equilibrium.

At	this	point,	we	would	normally	draw	the	game	tree,	start	at	the	bottom,	and
work	our	way	backward	until	we	found	every	sequentially	rational	move.
However,	the	actual	game	tree	is	incredibly	large.	To	see	this,	consider	the	range
of	offers	Pirate	4	can	make	if	Nash,	Pirate	2,	and	Pirate	3	walk	the	plank.	There
are	11	possible	offers:	(10,	0),	(9,	1),	(8,	2),	(7,	3),	(6,	4),	(5,	5),	(4,	6),	(3,	7),	(2,
8),	(1,	9),	and	(0,	10),	where	the	first	number	is	Pirate	4’s	share	and	the	second
number	is	Pirate	3’s	share.	Therefore,	at	this	decision	node	alone,	we	have
eleven	different	branches	coming	out	of	the	game	tree.

Things	only	get	worse	earlier	in	the	game.	Pirate	3’s	possible	offers	include
every	way	to	split	10	items	three	ways.	Drawing	such	a	game	tree	is	simply
impractical.

So	what	now?	Rather	than	drawing	an	exact	game	tree,	consider	the	general
flow	of	the	game	instead:



While	this	tree	lacks	numerical	payoffs,	it	showcases	the	order	of	moves.
Since	this	is	a	sequential	game	of	complete	information,	we	can	still	apply
backward	induction	here.	The	trick	is	that	we	must	consider	all	possible	offers	at
every	node	even	though	the	game	tree	does	not	explicitly	list	them.	Once	we
have	Pirate	5’s	subgame	perfect	equilibrium	offer,	we	take	information	and	see
how	it	affects	Pirate	4’s	offer.	From	there,	we	use	that	information	and	apply	it
to	Pirate	3’s	decision.	We	repeat	this	process	for	Pirate	2	and	Nash.	At	that	point,
we	will	have	found	what	occurs	in	the	game’s	subgame	perfect	equilibrium.

Let’s	begin	by	considering	Pirate	5’s	possible	offers.	Pirate	5	is	the	only
pirate	alive	when	he	makes	an	offer,	so	he	has	to	give	himself	all	ten	gold	coins.
Since	he	primarily	does	not	want	to	die,	he	will	obviously	vote	for	his	own	offer,
so	the	game	ends	with	him	as	captain	with	10	gold	coins	in	his	pocket.	Let’s
write	this	down:

Each	row	represents	a	subgame	perfect	proposal	for	the	player	in	question,
while	the	columns	show	the	offers	received	for	the	particular	player.	We	know
that	if	Pirate	5	makes	a	proposal,	he	keeps	all	of	the	gold	coins.	The	rest	of	the
pirates	are	dead.	Thus,	unless	a	proposal	passes	before	Pirate	5	makes	his	move,
the	outcome	in	row	five	is	the	overall	outcome	of	the	game.

Now	let’s	take	that	information	and	see	how	it	affects	Pirate	4’s	proposal.	He
knows	he	dies	if	the	voters	reject	his	offer.	Fortunately	for	him,	he	only	needs	at
least	half	of	the	pirates	to	vote	in	favor	of	the	proposal.	Since	only	Pirate	4	and
Pirate	5	are	alive	at	this	point,	Pirate	4’s	vote	is	sufficient	for	the	proposal	to



pass.	Consequently,	he	can	assign	10	gold	coins	to	himself,	leaving	Pirate	5	with
nothing.	Pirate	5	rejects	the	offer,	but	his	vote	is	moot.	Pirate	4	cannot	possibly
improve	his	outcome,	as	he	is	alive,	has	all	of	the	coins,	and	is	captain.
Therefore,	he	takes	everything	with	his	subgame	perfect	offer.	

The	game	gets	complicated	with	Pirate	3’s	offer.	Unlike	Pirate	4’s	or	Pirate
5’s	proposal,	Pirate	3	needs	two	votes	for	his	proposal	to	pass.	As	such,	if	he	has
any	hope	of	surviving,	he	must	buy	off	either	Pirate	4	or	Pirate	5.

Can	he	convince	Pirate	4	to	vote	with	him?	Definitely	not.	If	Pirate	3’s
proposal	does	not	pass,	Pirate	4	knows	he	survives,	becomes	captain,	and	takes
all	of	the	coins.	This	is	Pirate	4’s	best	possible	outcome;	even	if	Pirate	3	offered
Pirate	4	all	of	the	gold	coins,	Pirate	4	would	still	reject,	knowing	that	he	can
obtain	the	same	number	of	coins	by	forcing	Pirate	3	to	walk	the	plank.

As	such,	Pirate	3’s	life	is	in	the	hands	of	Pirate	5.	Although	we	may	initially
think	Pirate	3	has	to	give	most	of	the	coins	to	Pirate	5	to	convince	Pirate	5	to
vote	for	Pirate	3,	this	is	unnecessary.	Despite	Pirate	3’s	sticky	situation,	Pirate	5
is	in	a	tough	spot	as	well.	If	Pirate	3	walks	the	plank,	Pirate	4	gives	him	no	coins
at	all.	Thus,	a	single	gold	coin	is	sufficient	to	buy	Pirate	5’s	vote;	giving	Pirate	5
any	more	coins	merely	reduces	Pirate	3’s	allotment.

Therefore,	Pirate	3	gives	Pirate	5	one	gold	coin	and	keeps	nine	coins	to
himself,	he	survives,	and	he	finishes	as	captain.	The	only	way	he	could	improve
is	if	he	had	all	ten	coins	to	himself,	but	taking	a	coin	away	from	Pirate	5	leads	to
Pirate	3	walking	the	plank.	Consequently,	Pirate	3’s	equilibrium	offer	is	nine	for
himself,	zero	for	Pirate	4,	and	one	for	Pirate	5.

The	chart	elucidates	the	pirates’	voting	decisions.	Look	at	row	three,	which
represents	Pirate	3’s	equilibrium	offer.	If	the	proposal	fails,	the	pirates	know
they	will	end	up	with	the	outcome	in	the	row	directly	below.	Thus,	Pirate	3



decides	between	nine	gold	coins	or	death.	Since	he	prefers	life	to	death
primarily,	he	votes	for	his	own	proposal.	Pirate	4	earns	zero	gold	coins	if	Pirate
3’s	proposal	is	successful	and	ten	if	it	fails.	He	is	alive	in	both	cases	and	prefers
more	gold	coins	to	fewer,	so	he	votes	against	the	proposal.	Finally,	Pirate	5	earns
one	coin	for	Pirate	3’s	offer	and	zero	gold	coins	if	Pirate	3	walks	the	plank.
Pirate	5	survives	in	both	cases	and	prefers	more	gold	coins	to	fewer,	so	he
accepts	the	offer.	That	means	two	accept	and	one	rejects,	so	the	proposal	passes.

Now	we	move	to	Pirate	2’s	offer.	Pirate	2	needs	at	least	half	of	the	votes	to
survive.	Since	he	will	vote	for	his	own	offer,	he	needs	to	buy	a	single	vote	from
one	of	the	other	pirates.	Which	should	he	choose?	Pirate	3	earns	nine	gold	coins
if	Pirate	2	walks	the	plank,	so	Pirate	2	would	have	to	give	Pirate	3	all	ten	coins
to	buy	that	vote.	While	this	ensures	Pirate	2’s	survival,	he	might	want	to	shop
around	to	see	if	he	can	coerce	a	superior	deal.

Let’s	try	Pirate	5.	Pirate	5	earns	1	gold	coin	in	equilibrium	if	Pirate	2	dies,	so
it	only	takes	two	gold	coins	to	buy	Pirate	5’s	vote;	one	is	insufficient,	as	Pirate	5
would	rather	have	Pirate	2	dead	and	take	the	one	gold	coin	that	Pirate	3	offers
him	later.	As	such,	Pirate	2	would	much	rather	buy	Pirate	5’s	vote	than	Pirate
3’s.

However,	Pirate	4	offers	an	even	better	deal.	In	this	round	of	voting,	he	is
the	most	vulnerable—if	Pirate	2	walks	the	plank,	Pirate	3	offers	him	zero	coins
in	the	next	stage.	As	a	result,	Pirate	4	would	vote	to	keep	Pirate	2	alive	as	long	as
his	share	is	at	least	one	gold	coin.	Pirate	2	is	happy	to	oblige,	giving	Pirate	4
exactly	one	coin;	any	more	is	unnecessary	to	buy	Pirate	4’s	vote	and	only
decreases	Pirate	2’s	payoff.	So	Pirate	2	assigns	himself	nine	coins	and	Pirate	4
one	coin;	Pirate	2	and	Pirate	4	vote	for	the	proposal,	and	the	game	ends.

Finally,	we	must	find	Nash’s	optimal	offer.	To	survive,	he	must	obtain	two
votes	from	the	other	four	pirates.	Looking	at	the	chart,	Nash	observes	that	Pirate
3	and	Pirate	5	receive	zero	gold	coins	if	he	walks	the	plank.	Therefore,	he	can
give	one	coin	to	each	of	those	Pirates,	and	both	will	approve	the	offer.	Nash
survives	and	keeps	the	remaining	eight	gold	coins	in	this	case.

Nash	cannot	do	better.	If	he	tries	to	buy	off	Pirate	2,	he	must	offer	all	ten
coins.	That	leaves	no	coins	left	to	buy	the	third	vote.	Nash	could	buy	Pirate	4’s



vote	with	two	coins	and	give	one	coin	to	Pirate	3	or	Pirate	5,	but	he	only	receives
seven	coins	by	including	Pirate	4	in	the	bargain.	Thus,	giving	one	coin	to	Pirate
3	and	another	coin	to	Pirate	5	is	Nash’s	best	option.

This	final	table	gives	all	the	details	of	the	subgame	perfect	equilibrium.
However,	in	the	equilibrium,	only	Nash	makes	an	offer.	Nash,	Pirate	3,	and
Pirate	5	approve	it,	and	the	game	ends.	By	thinking	things	through,	Nash
escaped	the	plank	and	ended	up	doing	quite	well	for	himself.

	



2.6.2:	Nim
21	poker	chips	sit	between	two	players	at	a	table.	Player	1	begins	by	taking

one	or	two	chips	from	the	stack.	Then	player	2	selects	one	or	two.	The	players
continue	to	alternate	in	this	fashion.	The	player	who	takes	the	last	poker	chip
from	the	stack	is	the	winner.	Who	will	win	this	game?

Once	again,	drawing	a	game	tree	is	nearly	impossible;	each	player	has	two
choices	at	every	decision	node,	which	leads	to	a	ton	of	possible	outcomes.
Rather	than	analyze	each	of	these	outcomes	individually,	we	can	benefit	by
grouping	similar	decisions	together.

For	example,	consider	the	trivial	case	where	a	player	moves	with	only	one
chip	left	in	the	pile.	That	player	must	take	the	remaining	chip,	and	he	therefore
wins	the	game.	This	covers	all	cases	where	there	is	only	one	chip	remaining,
regardless	of	the	history	of	the	game	or	whose	move	it	is.

Now	consider	a	similarly	trivial	case	where	a	player	moves	with	two	chips
left	in	the	pile.	This	subgame	is	relatively	tractable,	so	we	can	draw	the
following	game	tree	to	represent	the	situation:

Note	that	we	have	generalized	the	players	in	this	abstract	game	tree,	which
rewards	1	for	a	win	and	-1	for	a	loss.	It	does	not	matter	whether	player	1	or
player	2	is	X.	(For	the	sake	of	clarity,	however,	player	X’s	payoffs	will	always
come	first	in	this	section.)	Player	X	simply	refers	to	the	person	who	moves
whenever	only	two	chips	are	left.	If	player	X	takes	two,	he	wins	and	earns	1.	If
he	takes	one,	player	Y	has	to	take	one	as	well.	The	end	result	is	that	player	X
loses	and	earns	-1.	Since	1	is	greater	than	-1,	player	X	ought	to	take	two.

Let’s	move	back	a	step.	Suppose	player	Y	has	three	chips	left	in	the	stack.
What	should	he	do?



If	player	Y	takes	two,	player	X	takes	one	and	wins.	Alternatively,	if	player	Y
takes	one,	player	X	takes	two	and	wins.	(We	know	from	the	last	step	that	player
X	would	not	take	one,	as	player	Y	then	takes	one,	resulting	in	player	X	losing.)
Thus,	player	Y	is	in	a	no-win	situation.	Regardless	of	whether	he	takes	one	or
two,	player	X	can	always	counter	with	a	winning	strategy.	In	turn,	player	Y
ultimately	earns	-1	regardless	of	his	decision	here.

Now	imagine	there	are	four	items	left	in	the	stack.	Can	this	person	win?	Yes.
By	taking	one,	that	player	leaves	three	in	the	stack	for	his	opponent,	and	we
know	that	a	person	loses	if	three	items	are	left	in	the	pile.	Alternatively,	that
player	could	take	two	and	leave	two	remaining,	but	that	means	his	opponent	can
take	two	and	win	the	game.	Drawing	out	the	game	tree	for	this	would	be
extremely	cumbersome;	merely	working	through	the	logic	of	backward
induction	saves	us	time	here.

What	if	there	are	five?	The	player	could	take	two	and	leave	his	opponent
with	three,	thus	guaranteeing	the	win.	Taking	one	is	a	losing	strategy,	as	the
opponent	could	respond	by	taking	one	as	well,	thus	leaving	the	original	player
with	only	three	left	in	the	pile,	which	is	a	losing	position.	So	with	five	left,	the
rational	player	takes	two.

And	six?	The	player	is	in	trouble.	If	he	takes	one,	his	opponent	can	respond
by	taking	two,	leaving	him	with	three	left	in	the	pile,	so	he	loses.	Likewise,	if	he
takes	two,	his	opponent	can	take	one,	leaving	him	with	three	left	once	again.	As
such,	regardless	of	his	strategy	here,	the	player	loses.

How	about	seven?	The	player	can	take	one	and	leave	his	opponent	with	six,
guaranteeing	a	win.	On	the	other	hand,	he	could	grab	two,	but	then	his	opponent
could	grab	two	as	well.	That	leaves	him	with	three	left	in	the	pile,	so	he	loses.
Consequently,	he	can	only	take	one.

If	there	are	eight	in	the	pile,	however,	he	must	take	two.	That	leaves	six	left
for	his	opponent,	guaranteeing	him	victory.	If	he	takes	one,	on	the	other	hand,
his	opponent	can	also	take	one,	leaving	six	in	the	pile	and	a	loss	for	the	original



player.
Nine?	This	is	the	same	position	as	six.	If	the	player	takes	one,	his	opponent

takes	two,	and	he	is	stuck	with	six	in	the	pile	and	a	loss.	Taking	two	does	not
improve	his	position;	the	opponent	takes	one	instead,	he	is	left	with	six,	and	he
still	loses.

By	now,	the	pattern	should	be	obvious.	If	a	player	moves	when	there	is	a
multiple	of	three	left,	then	he	can	select	whatever	he	wants,	and	his	opponent
follows	it	up	with	the	opposite	action.	So	if	the	player	takes	one,	the	other	play
takes	two;	and	if	the	first	player	takes	two,	the	second	player	takes	one.	In	either
case,	three	poker	chips	leave	the	pile,	leaving	a	multiple	of	three	items	still	left.
Whoever	makes	the	second	play	is	guaranteed	to	take	the	last	chip	from	the
stack.

In	contrast,	when	the	number	of	chips	left	is	not	a	multiple	of	three,	the
player	can	reduce	the	pile	to	a	multiple	of	three,	which	ultimately	leads	to
victory.

So	who	wins	this	game?	Since	there	are	21	poker	chips	in	the	original	stack,
the	second	player	wins.	Her	path	to	victory	is	simple:	whenever	player	1	moves,
she	makes	the	exact	opposite	action.	After	two	moves,	18	chips	will	be	left.
After	four,	it	will	be	down	to	15,	and	so	forth.	Eventually	player	2	takes	the	final
one	or	two	chips	left	in	the	stack	and	wins.
	



Conclusion
In	the	pirate	game	and	nim,	the	difficulty	in	finding	the	solution	not	using

backward	induction	but	rather	setting	up	the	problem	to	apply	backward
induction.

However,	some	situations	do	not	have	immediately	obvious	endgames.	And
without	an	endgame,	backward	induction	is	useless.	Consequently,	when	you	see
a	problem	of	this	sort,	think	about	how	the	interaction	could	possibly	end	and
whether	there	is	a	general	pattern	to	these	endgames.	Work	backward	from	those
points,	even	if	you	cannot	draw	an	adequate	game	tree	to	operate	from.
Eventually,	you	might	arrive	at	a	solution.



Lesson	2.7:	Problems	with	Backward	Induction
At	face	value,	backward	induction	and	subgame	perfection	are	intuitive

solution	concepts.	However,	in	extreme	cases,	backward	induction	can	lead	to
some	strange—and	possibly	implausible—outcomes.	Moreover,	rational	players
may	have	incentive	to	deliberately	act	irrational	so	they	can	increase	their
payoffs.	This	section	covers	three	of	those	gray	areas,	reminding	us	how	fragile
our	assumptions	can	be.
	



2.7.1:	Mistake-Free	Games
To	start,	actors	in	our	models	never	make	mistakes.	This	is	reasonable	to

assume	when	there	are	only	a	couple	of	players	and	two	or	three	moves,	but
things	quickly	get	out	of	hand	as	we	increase	the	complexity	of	the	game.

Consider	this	situation.	One	at	a	time,	each	of	100	individuals	chooses	to
take	or	to	contribute.	If	all	100	players	in	a	row	contribute,	everyone	earns	100.
However,	if	any	player	chooses	take	at	any	point	in	the	process,	the	game
immediately	ends,	the	player	who	chose	take	earns	1,	and	every	other	player
earns	0.

We	can	use	backward	induction	to	solve	the	game.	Suppose	the	first	99
individuals	contribute.	Then	the	final	decision	node	looks	like	this,	with	only
individual	100's	payoffs	shown:

If	he	contributes,	he	earns	100.	If	he	takes,	he	earns	1.	Since	100	is	greater
than	1,	he	contributes.

Let's	roll	back	one	step	and	find	individual	99's	optimal	play.	Here	is	his
choice,	this	time	with	only	individual	99's	payoffs	showing:

If	he	takes,	he	earns	1.	If	he	contributes,	then	individual	100	contributes,	and
he	earns	100.	Thus,	he	contributes.	We	could	go	through	backward	induction	for
the	remaining	98	players,	but	we	would	see	the	same	thing:	the	players
contribute	all	the	way	down	the	line	and	ultimately	all	earn	100.

Yet	something	is	unsatisfying	about	this	SPE.	While	player	100	can
contribute	in	comfort	knowing	that	he	will	reap	the	collective	benefit,	each
player	moving	backward	relies	more	and	more	heavily	on	the	other	players’
optimal	play	to	achieve	the	large	payoff.

In	that	regard,	player	1	is	in	the	worst	position:	he	needs	the	99	players	after
him	to	play	optimally	to	justify	contributing.	Suppose	he	believes	every	player



after	him	is	99%	likely	to	contribute.	Then	the	probability	all	of	them	contribute
is	.9999,	or	slightly	less	than	37%.	Since	complete	contribution	is	worth	100	and
taking	is	only	worth	1,	contributing	is	still	a	wise	play.

But	suppose	player	1	held	his	other	players	in	lower	regard.	Instead	of
estimating	all	of	the	players	to	contribute	99%	of	the	time,	this	time	he	believes
they	are	95%	likely	to	contribute.	Although	this	is	still	an	optimistic	outlook,	the
large	number	of	players	dooms	the	outcome.	The	probability	that	all	remaining
players	contribute	equals	.9599,	which	is	slightly	greater	than	0.006%.	In	that
case,	player	1	ought	to	take	the	1	upfront	and	end	the	game.

Further	problems	exist.	Suppose	player	1	estimates	that	players	contribute
99%	of	the	time.	However,	he	believes	that	player	2	has	a	grim	outlook
regarding	players	3	through	100,	estimating	each	of	them	is	only	95%	likely	to
contribute.	Thus,	in	player	2's	eyes,	there	is	a	.9598,	or	slightly	greater	than
0.0065%	chance,	that	contribution	will	ultimately	pay	off.	Consequently,	player
2	takes	her	payoff	of	1	and	ends	the	game.	Player	1	earns	0	for	this	outcome.

But	if	player	2	takes,	player	1	should	preempt	player	2	by	taking	at	the
beginning	of	the	game;	he	earns	1	if	he	takes	immediately	versus	0	if	he	waits
for	player	2	to	take.	Therefore,	player	1	can	only	rationally	contribute	if	he	is
extremely	optimistic	of	everyone	else's	ability	to	play	optimally	and	believes
everyone	else	is	optimistic	as	well.	What	seemed	like	a	simple	choice	for	player
1	has	evolved	into	a	deeply	complicated	affair!

Unfortunately,	backward	induction	and	subgame	perfection	lead	us	nowhere
on	these	issues.	While	this	is	not	an	indictment	on	backward	induction	or	SPE,
the	game	does	remind	us	of	their	assumptions.	We	assume	players	are	rational.
We	assume	they	know	what	is	best	for	them.	We	assume	they	do	not	make
mistakes.	Although	these	assumptions	are	not	heroic	when	the	game	is	small	and
involves	only	a	few	players,	it	becomes	further	and	further	dicey	with	more	and
more	additions	to	the	game.	And	if	we	want	to	explicitly	model	mistakes	under
our	rationalist	framework,	then	we	must	put	moves	from	nature	into	the	game
that	possibly	(and	randomly)	end	the	game	at	each	step.
	



2.7.2:	Complete	Information:	The	Chain	Store	Paradox
Backward	induction	has	other	issues.	This	time,	suppose	a	chain	store	has

locations	in	five	different	cities	and	faces	a	challenge	from	five	individual	local
companies.	All	of	the	potential	challengers	only	want	to	enter	the	market	if	the
chain	store	does	not	engage	in	a	price	war.	The	chain	store	finds	it	more
profitable	to	accede	to	each	of	the	challenges	individually	than	to	start	a	price
war	to	drive	the	competitor	out	of	business.	However,	the	chain	store	would
rather	start	a	price	war	with	one	or	two	of	the	competitors	if	it	deters	the	other
three	from	entering	the	market.

The	game	begins	with	a	challenger	in	town	1	choosing	to	enter	the	market	or
sit	out.	If	it	enters,	the	chain	store	chooses	whether	to	engage	in	a	price	war	or
not.	Afterward,	the	challenger	in	town	2	sees	what	occurred	in	town	1	and	then
decides	whether	to	enter.	Once	again,	if	the	challenger	in	town	2	enters,	the
chain	store	decides	whether	to	engage	in	a	price	war.	The	game	repeats
sequentially	three	more	times	in	the	three	remaining	towns.

The	game	tree	is	far	too	large	to	fit	in	these	small	pages,	so	we	will	have	to
work	out	the	logic	of	the	game	without	it.	Regardless	of	the	previous	moves,
consider	the	chain	store’s	final	action	if	the	challenger	in	town	5	enters	the
market.	The	introduction	of	the	game	mentioned	that	the	chain	store	finds	it
more	profitable	to	accede	to	each	challenger	individually.	So	the	chain	store
accedes	in	this	case.	Moving	back	a	step,	the	challenger	in	town	5	only	wants	to
enter	if	the	chain	store	accedes.	Since	it	knows	the	chain	store	will	accede,	the
challenger	enters.

Now	consider	how	the	chain	store	should	deal	with	the	challenger	in	town	4
entering	the	market,	regardless	of	the	history	of	the	game	before	that.	Again,
since	the	chain	store	finds	it	more	profitable	to	accede	to	the	challenger,	it	does
not	engage	in	a	price	war.	Therefore,	the	challenger	in	town	4	enters.

This	logic	repeats	all	the	way	up	the	game	tree.	Ultimately,	the	subgame
perfect	equilibrium	is	awful	for	the	chain	store:	every	challenger	enters	and	the
chain	store	never	challenges.	Essentially,	the	challengers	completely	push	over
the	chain	store.

But	suppose	you	are	the	challenger	in	town	2,	and	you	see	that	the	chain
store	has	started	a	price	war	against	the	challenger	in	town	1.	Now	what	should
you	do?	The	subgame	perfect	equilibrium	says	you	should	challenge.	However,
subgame	perfection	is	based	on	rational	play—or,	at	least	how	we	define
“rational”	play.	When	the	chain	store	engaged	in	a	price	war	in	town	1,	it
demonstrated	irrational	behavior.	Consequently,	it	is	no	longer	clear	whether	you
should	expect	a	rational	response	when	the	chain	store	decides	whether	to	start	a
price	war	with	you.	If	a	price	war	means	that	you	go	into	deep	debt,	it	may	not



be	worth	the	risk	for	you	to	challenge	in	the	first	place.
Now	suppose	you	are	the	chain	store,	you	are	perfectly	rational,	and	you

cannot	credibly	threaten	a	price	war	with	any	potential	challengers.	Your	rival	in
town	1	challenges	you.	How	do	you	respond?	Your	perfect	rationality	tells	you
not	to	start	a	price	war.	But	imagine	you	did.	As	you	just	saw,	your	irrational
price	war	against	the	challenger	in	town	1	might	deter	the	challenger	in	town	2
from	entering	the	market.	The	same	could	be	true	for	the	challengers	in	towns	3,
4,	and	5.	That	being	the	case,	you	ought	to	start	a	price	war	against	the	first
competitor—even	if	doing	so	is	completely	irrational	by	our	standards.	In	turn,
the	challenger	in	town	1	might	not	want	to	engage,	out	of	fear	that	you	plan	to
deliberately	act	irrational.

Thus,	the	“chain	store	paradox”	is	that	backward	induction	tells	us	that	all
the	competitors	will	enter	the	market,	yet	we	have	a	perfectly	good	reason	to
believe	that	no	competitor	will.

Where	did	backward	induction	fail	us	here?	Again,	the	combination	of	lots
of	actors,	lots	of	moves,	and	lots	of	assumptions	sets	us	up	for	trouble.	Of
particular	concern	here,	however,	is	the	concept	of	complete	information.	That
is,	in	the	model,	we	assume	the	chain	store	finds	it	unprofitable	to	start	a	price
war	against	any	of	the	possible	challengers	and	that	the	possible	challengers
know	this.	Realistically,	though,	challengers	might	be	unsure	whether	the	chain
store	maximizes	its	profits	in	each	individual	town	by	starting	a	price	war	or	by
acceding	to	the	challengers.

Unfortunately,	incomplete	information	game	theory	is	well	beyond	the	scope
of	this	chapter.	Nevertheless,	we	do	not	need	a	model	to	understand	that	a	weak
chain	store	has	incentive	to	pretend	that	it	is	a	strong	chain	store	by	engaging	in
a	price	war	with	any	competitor	that	challenges	it.	Consequently,	one	possible
resolution	to	the	paradox	is	that	we	tried	to	fit	a	game	of	incomplete	information
into	a	game	of	complete	information.	And	if	we	do	not	put	the	correct
assumptions	into	the	model,	we	should	not	expect	to	see	the	correct	expectations
coming	out	of	it.

However,	something	is	still	unsettling	about	the	backward	induction
prediction	even	if	we	stick	to	the	complete	information	story	exclusively.
Moreover,	the	chain	store	paradox	is	not	the	only	game	with	this	problem.	Here,
the	chain	store	deliberately	acted	viciously	irrational	to	improve	its	payoff.	In	the
next	section,	we	explore	a	game	where	players	can	deliberately	act	benevolently
irrational	and	still	reap	the	benefits.

	



2.7.3:	Feigning	Irrationality:	The	Centipede	Game
This	is	a	two	player	game.	Player	1	begins	by	taking	$2	or	adding	$2	to	the

pot.	If	he	takes	the	money,	the	game	ends.	If	he	adds	the	$2	to	the	pot,	the
second	player	can	take	$2	and	split	the	$2	in	the	pot,	or	she	can	add	the	$2	to	the
pot.	If	she	takes	the	money,	the	game	ends	and	player	2	earns	$3	and	player	1
earns	$1.	Otherwise,	player	1	chooses	to	take	$2	and	split	the	$4	in	the	pot	or
add	that	$2	to	the	pot.	If	he	takes	the	$2,	the	game	ends,	and	he	earns	$4	while
player	2	earns	$2.	Otherwise,	player	2	faces	the	same	decision	as	before	but	with
a	larger	pot.	This	process	repeats	for	100	total	rounds,	hence	the	“centipede”
name.

The	first	few	rounds	look	like	this:

If	the	players	always	add	the	money	to	the	pot,	then	the	game	continues	until
$200	is	available.	In	the	final	move,	player	2	decides	whether	to	take	$101	and
give	$99	to	player	1	or	split	the	money	so	that	both	players	take	$100.

The	last	few	rounds	look	like	this:

Suppose	the	players	only	want	to	maximize	their	monetary	payoff.	Then	we
can	use	the	dollar	figures	as	expected	utilities	and	solve	the	game	with	backward
induction.	Let’s	start	at	player	2’s	final	decision:



	
Since	101	beats	100,	player	2	takes	if	the	game	reaches	the	final	decision

node.
Now	let’s	backtrack	to	the	second	to	last	choice:

If	player	1	adds,	player	2	takes,	and	player	1	earns	99.	If	he	takes,	he	earns
100.	Therefore,	he	takes.

Let’s	go	back	another	step:

This	is	a	similar	story.	If	player	2	adds,	player	1	takes,	and	player	2	earns	98.
If	she	takes,	she	earns	99.	Therefore,	she	takes.

The	same	logic	repeats	over	and	over	again.	Eventually,	we	reach	the	first
decision	node:

If	player	1	begins	by	adding,	player	2	ends	the	game	at	the	next	decision
node,	and	player	1	earns	1.	Alternatively,	he	could	take	immediately	and	earn	2.
Since	2	beats	1,	the	game	begins	and	ends	with	player	1	taking.	Thus,	the	SPE	is
for	each	player	to	take	at	every	decision	node.		The	subgame	perfect	outcome	is
unfortunate;	many	outcomes	have	better	payoffs	for	both	players	than	what
occurs	in	equilibrium.

The	centipede	game	is	a	frequent	subject	of	laboratory	experiments.
Although	the	game	ends	immediately	in	the	SPE,	in	practice	players	generally
play	for	many	rounds	before	someone	finally	takes	the	extra	two	dollars.	As	with
the	chain	store	paradox,	game	theorists	have	a	variety	of	explanations	for	the
discrepancy	between	subgame	perfect	play	and	play	in	practice.

First,	players	may	be	irrational.	They	simply	may	be	unable	to	work	through



the	logic	to	understand	that	they	ought	to	take	immediately.	In	turn,	they
repeatedly	add	until	they	are	close	enough	to	understand	the	dilemma,	which
eventually	causes	the	game	to	end.

Second,	note	that	just	a	single	irrational	player	can	throw	a	wrench	into	the
system.	Suppose	you	are	a	rational	player	2,	and	player	1	begins	the	game	by
adding.	You	realize	he	is	not	rational	and	wonder	what	would	happen	if	you
added	as	well.	Given	that	he	has	already	contributed	to	the	pot,	it	stands	to
reason	that	he	will	do	so	again.	Moreover,	if	you	chain	together	a	few	rounds	of
cooperation,	your	ultimate	payoff	will	be	substantially	larger	than	the	3	you	earn
if	you	end	it	at	your	first	available	opportunity.	As	such,	you	may	be	inclined	to
add	over	your	first	dozen	or	so	decision	nodes.	Thus,	irrational	play	sparks
further	irrational	play.

Third,	this	logic	in	turn	destroys	the	backward	induction	solution	when	there
are	two	rational	players.	Suppose	you	are	a	rational	player	1	and	you	ignore	the
SPE	by	beginning	with	add.	Now	the	rational	player	2	has	no	idea	what	is	going
on.	She	may	figure	you	are	irrational	and	so	she	should	continue	as	in	the
previous	case.	Alternatively,	she	may	think	you	are	rational	but	deliberately
acting	irrational	in	hopes	that	she	will	play	irrationally	as	well,	thus	improving
both	of	your	payoffs.	This	time,	irrational	play	sparked	further	irrational	play,
yet	no	one	was	irrational!	What	it	means	to	be	“rational”	here	is	not	crystal	clear,
so	perhaps	our	very	definition	of	rationality	is	what	fails	us.

On	the	other	hand,	the	centipede	game’s	experimental	evidence	may	rest	on
a	faulty	assumption.	We	used	the	dollar	figures	as	expected	utilities,	but	it	is
reasonable	to	believe	that	people	also	value	altruism.	That	being	the	case,	player
1	might	find	choosing	take	in	the	first	round	to	be	unacceptably	mean.	If	so,	the
expected	utilities	we	were	using	for	that	game	were	incorrect,	and	we	should	not
expect	false	assumptions	to	produce	accurate	predictions.

	



Takeaway	Points
1)	As	with	everything	else	in	game	theory,	backward	induction	is	only	as
good	as	its	assumptions.
2)	A	game	in	which	players	do	not	make	mistakes	is	fundamentally	different
from	a	game	where	players	do	make	mistakes.	It	should	not	be	surprising	that
the	results	are	different	when	we	change	that	assumption.
3)	Players	sometimes	have	incentive	to	feign	irrationality,	creating
opportunities	for	both	players	to	benefit.



Lesson	2.8:	Forward	Induction
When	we	solve	games	with	backward	induction,	players	believe	all	future

play	will	be	rational,	and	they	condition	their	present	behavior	on	what	will
occur	in	the	future.	Forward	induction	adds	an	extra	layer	of	complexity.	Here,
the	players	believe	that	all	prior	play	was	rational	as	well,	and	they	condition
their	present	play	based	off	what	they	can	infer	about	past	play.

Although	forward	induction	may	seem	like	a	straightforward	assumption,	it
quickly	leads	to	some	involved	inferences.	We	will	start	with	a	simple	example
and	work	our	way	up	in	complexity.
	



2.8.1:	Pub	Hunt
Let's	begin	with	a	modified	form	of	the	stag	hunt.	Player	1	chooses	whether

to	hunt	for	a	stag,	hunt	for	a	hare,	or	go	to	the	pub.	If	he	goes	to	the	pub,	player	2
will	see	him	and	automatically	join	him	there.	Both	earn	2.5	for	this	outcome.	If
player	1	hunts,	player	2	chooses	a	target	as	well	without	seeing	what	player	1	is
aiming	for.	Their	payoffs	here	are	the	same	as	the	original	stag	hunt.

Here	is	the	game	tree:

If	we	ignore	player	1's	pub	move,	the	remaining	game	is	an	ordinary	stag
hunt:

We	know	a	simultaneous	move	stag	hunt	has	multiple	Nash	equilibria.	This
presents	a	new	problem.	We	have	seen	simultaneous	move	games	with	multiple
Nash	equilibria	before	but	never	when	additional	moves	were	around.	Here,
player	1’s	pub	strategy	throws	a	wrench	in	the	system;	we	cannot	be	sure
whether	the	Nash	equilibria	of	the	stag	hunt	make	sense	in	the	presence	of	the
pub	strategy.

Let’s	think	our	way	through	this	one.	Suppose	player	1	chose	hare.
Depending	on	which	strategy	player	2	selects,	player	1	could	end	up	in	either	of
these	two	outcomes:

In	player	1’s	best	case	scenario,	player	2	hunts	a	stag,	leaving	player	1	with	a
payoff	of	2.	In	the	worst	case	scenario,	she	chases	a	hare	as	well,	and	he	earns	1.

Compare	those	outcomes	to	going	to	the	pub	instead:



Going	to	the	pub	locks	in	a	payoff	of	2.5	for	player	1.	In	contrast,	the	most
he	earns	if	he	plays	hare	is	2.	Thus,	it	is	irrational	for	player	1	to	play	hare.

Now	consider	player	2's	position.	Suppose	she	has	an	opportunity	to	move.
The	game	looks	like	this	from	her	perspective:

Player	2	does	not	know	whether	player	1	chose	stag	or	hare;	all	that	she	sees
is	that	he	did	not	go	to	the	pub.	If	he	chose	stag,	she	should	choose	stag	as	well;
but	if	he	aimed	for	hares,	she	should	follow	suit.	All	around,	player	2	is	in	a
dilemma.

Or	is	she?	According	to	forward	induction,	all	past	play	was	rational.	We
saw	that	player	1	would	never	rationally	play	hare.	Thus,	although	player	2
cannot	directly	see	player	1’s	move,	she	can	infer	he	did	not	play	hare	and
therefore	played	stag.	In	turn,	she	can	narrow	down	the	path	of	play	to	this:

Since	3	beats	2,	she	should	hunt	a	stag.
Now	let's	work	through	player	1's	move.	He	can	reason	through	the	above

and	conclude	that	player	2	will	play	stag.	Thus,	his	decision	looks	like	this:

If	he	goes	to	the	pub,	he	earns	2.5.	If	he	hunts	a	stag,	player	2	joins	him,	and
he	earns	3.	Finally,	if	he	hunts	a	hare,	player	2	still	aims	for	the	stag,	and	so	he
earns	2.	Since	3	beats	both	2.5	and	2,	he	hunts	a	stag.	Conveniently	enough,
forward	induction	has	left	us	with	<stag,	stag>	as	the	unique	equilibrium.



After	boiling	the	process	down,	we	witnessed	a	complicated	application	of
strictly	dominated	strategies.	Let's	look	at	the	matrix	of	the	pub	hunt:

Specifically,	compare	player	1's	pub	strategy	against	his	hare	strategy:

2.5	beats	both	2	and	1.	Therefore,	regardless	of	player	2's	strategy,	player	1
earns	more	at	the	pub	than	he	does	hunting	a	hare.	This	is	our	definition	of	strict
dominance;	accordingly,	we	ought	to	remove	player	1's	hare	strategy	from	the
matrix:

If	we	mark	the	best	responses	to	the	remaining	game,	we	find	two	pure
strategy	Nash	equilibria:

So	how	did	we	only	end	up	with	one	solution	via	forward	induction?	We
could	think	of	the	matrix	sequentially.	Player	1	moves	first.	He	can	either	play
pub	or	stag.	Consider	player	2's	best	response	to	pub:

Player	2	earns	2.5	regardless	of	her	choice,	so	she	is	free	to	choose	either
strategy.	(In	practice,	the	game	ends	when	player	1	picks	pub,	so	player	2	never
actually	moves.	This	is	why	player	2	is	indifferent	between	her	strategies	and
both	players	earn	the	same	payoffs.)

Now	consider	player	2's	best	response	to	stag:



Here,	she	must	choose	stag.
Forward	induction	effectively	allows	player	1	the	choice	of	which	universe

he	wants	to	live	in:	the	universe	in	which	player	2	responds	to	him	going	to	the
pub	or	the	universe	in	which	player	2	responds	to	him	hunting	a	stag.	He	earns
2.5	in	the	first	universe	and	3	in	the	second	universe,	so	naturally	he	chooses	to
live	in	the	second	universe.	Thus,	<stag,	stag>	is	the	unique	equilibrium.

Although	logically	demanding,	forward	induction	leads	to	a	plausible	result
here.	After	all,	in	the	original	stag	hunt,	the	players	merely	wanted	to	coordinate
on	the	stag.	Introducing	the	pub	allows	them	to	do	this,	even	though	the	players
never	meet	there.

Unfortunately,	the	pub	hunt	is	also	the	simplest	application	of	forward
induction.	The	examples	grow	increasingly	bizarre	from	here.
	



2.8.2:	Defenestrated	Chicken
In	Lesson	1.6,	we	solved	the	game	of	chicken,	in	which	two	teenagers	drove

straight	at	each	other,	waiting	for	the	other	one	to	swerve.	We	now	consider	a
richer	form	of	the	game.	Player	1	has	a	trick	steering	wheel	that	can	be	removed
at	will.	The	game	begins	with	player	1	choosing	whether	to	toss	his	steering
wheel	out	the	window—that	is,	defenestrate	it—or	not.	If	player	1	defenestrates
his	steering	wheel,	he	is	physically	incapable	of	swerving.	Player	2	observes	the
toss	and	recognizes	that	player	1	has	locked	into	continuing,	and	she	chooses
whether	to	continue	or	swerve.	If	he	keeps	his	steering	wheel	in,	he	chooses
whether	to	continue	straight	or	swerve.	Player	2	must	also	choose	between
continuing	straight	and	swerving,	though	she	cannot	see	player	1’s	strategy.

Here	is	the	game	tree:

If	player	1	defenestrates,	player	2	has	a	simple	decision	node.	Let’s	use
backward	induction	there:

Player	2	knows	player	1	must	continue	straight.	If	she	also	continues,	she
meets	certain	disaster	and	earns	-10.	If	she	swerves,	she	earns	-2.	Since	-2	beats
-10,	she	swerves.

Removing	the	continue	strategy	at	that	decision	node	leaves	the	following
game:

Note	what	happens	if	player	1	defenestrates:

If	player	1	tosses	his	steering	wheel	out	the	window,	player	2	knows	to



swerve.	Player	1	earns	2	for	this	outcome,	which	is	his	greatest	expected	utility
possible,	which	in	turn	means	he	has	no	profitable	deviation.	Player	2	cannot
profitably	deviate	either,	since	she	must	swerve	if	he	defenestrates.	Thus,	this
must	be	an	outcome	that	occurs	in	an	equilibrium.

We	have	discussed	ad	nauseum	about	how	subgame	perfection	is	the	study
of	credible	threats.	Defenestrated	chicken	teaches	a	valuable	lesson	about	how	to
make	threats	credible.	In	the	original,	simultaneous	move	chicken,	both	players
wanted	to	force	the	other	to	swerve.	However,	these	threats	were	not	necessarily
credible;	if	both	insisted	that	they	would	not	swerve,	they	wind	up	in	the	fiery
disaster	outcome.	Yet,	by	defenestrating	his	steering	wheel,	player	1
demonstrates	an	inability	to	swerve	in	the	future.	In	turn,	player	2	knows	player
1’s	threat	to	not	swerve	is	credible—he	literally	must	continue	going	straight	at
that	point.	So	player	1’s	crafty	maneuver	earns	him	his	highest	payoff.

Most	analyses	of	defenestrated	chicken	stop	there.	We	have	certainly	found
an	outcome	that	can	occur	in	equilibrium,	but	we	have	not	proven	the
uniqueness	of	this	equilibrium	outcome.	We	also	have	not	found	a	complete
equilibrium;	the	equilibrium	does	not	explain	what	player	2	would	do	at	her
other	information	set,	where	she	does	not	know	if	player	1	continued	or	swerved.
To	complete	our	analysis,	we	must	address	both	of	these	issues.

Let’s	begin	with	player	2’s	other	information	set.	She	returns	to	a	familiar
dilemma:

If	player	1	continued,	player	2	is	on	the	left	side	of	her	information	set.	She
should	therefore	swerve,	as	-2	beats	-10.	But	if	player	1	swerved,	player	2	is	on
the	right	side	of	her	information	set.	In	that	case,	she	should	continue,	as	2	beats
0.	Thus,	player	2’s	optimal	strategy	depends	on	what	player	1	did.	But
unfortunately	for	her,	she	cannot	see	his	movement.

Nevertheless,	forward	induction	allows	her	to	infer	player	1’s	choice.	Note
that	player	1	would	never	swerve:



If	player	1	swerves,	he	earns	0	or	-2.	However,	if	he	defenestrates,	player	2
swerves	with	certainty,	and	player	1	earns	2.	Since	beats	both	0	and	-2,	it	is
irrational	for	player	1	to	swerve.

With	that	in	mind,	suppose	player	2	has	an	opportunity	to	move.	Recall	that
she	sees	this:

She	cannot	directly	observe	whether	player	2	has	continued	or	swerved.
However,	she	should	believe	player	1’s	past	move	was	rational.	Since	swerving
is	irrational	for	him,	she	therefore	infers	that	he	continued.	As	such,	she	can
think	of	her	information	set	as	a	single	decision	node:

If	she	continues,	she	earns	-10.	If	she	swerves,	she	earns	-2.	Since	-2	beats
-10,	she	swerves.

Player	1	knows	player	2	will	infer	this	information,	so	he	can	view	the	game
accordingly:

If	player	1	defenestrates,	player	2	swerves,	and	he	earns	2.	If	he	swerves,
player	2	swerves,	and	he	earns	0.	Finally,	if	he	continues,	player	2	swerves,	and
he	earns	2.	Therefore,	player	1	earns	the	most	if	he	defenestrates	or	he	continues.
Since	both	of	these	strategies	ultimately	end	with	him	earning	2,	he	is	indifferent



between	them.	Therefore,	he	can	play	defenestrate	as	a	pure	strategy,	continue	as
a	pure	strategy,	or	mix	freely	between	the	two.	Regardless,	player	2	always
swerves.	Despite	our	best	intentions,	we	are	left	with	infinitely	many	equilibria.

As	a	practical	matter,	we	may	wonder	whether	any	equilibrium	in	which
player	1	continues	with	positive	probability	is	plausible.	Forward	induction
remains	a	controversial	topic	in	game	theory	because	it	requires	players	to	make
strong	inferences	about	the	other	players’	behaviors.	To	see	why,	imagine	player
2	believed	player	1	was	going	to	play	the	defenestrate	equilibrium,	player	1
gunned	toward	her	full	throttle	without	tossing	his	steering	wheel.	Although	the
game	says	that	player	1’s	move	is	optimal,	player	2	might	imagine	he	is
irrational	or	made	a	mistake,	leading	her	unsure	whether	she	should	optimally
continue	or	swerve.	In	turn,	perhaps	a	rational	player	1	should	just	defenestrate
at	the	start	rather	than	leaving	his	rationality	in	doubt.

Alternatively,	we	should	simply	view	this	result	as	a	function	of	its
assumptions.	If	both	players	are	rational,	understand	backward	induction,	and
understand	forward	induction,	then	all	of	those	equilibria	are	plausible.	If	one	of
these	actors	is	not	rational,	does	not	understand	backward	induction,	or	does	not
understand	forward	induction,	then	we	should	accept	the	fact	that	our	inaccurate
assumptions	can	lead	to	inaccurate	predictions.

	



2.8.3:	Costly	Defenestration
Consider	the	same	defenestrated	chicken	setup	with	a	slight	modification:	it

is	costly	for	player	1	to	defenestrate	his	steering	wheel.	Perhaps	his	window	will
not	open	or	close,	so	he	must	shatter	it	to	toss	out	the	wheel.	Perhaps	he	finds	it
costly	to	drive	back	to	pick	it	up.	Perhaps	the	impact	on	the	ground	will	break
the	steering	wheel,	and	player	1	will	have	to	replace	it.	Regardless,	let’s	say	the
cost	to	him	is	-1.	Thus,	if	he	plays	defenestrate,	both	of	his	defenestration
payoffs	are	worth	1	less	than	they	were	before.

Here	is	the	game	tree:

Note	that	the	modification	does	not	change	player	2’s	optimal	strategy	if

player	1	defenestrates:	
Just	as	before,	-2	beats	-10.	As	such,	player	2	swerves.
Removing	her	swerve	strategy	from	that	contingency	leaves	us	with	the

remaining	game	tree:	
It	still	does	not	make	sense	for	player	1	to	ever	swerve:	

Player	1’s	payoff	of	1	for	defenestration	still	beats	both	0	and	-2.	So
swerving	is	irrational.



Now	consider	player	2’s	move:

Although	she	does	not	actually	observe	whether	player	1	has	continued	or
swerved,	forward	induction	allows	her	to	infer	that	he	continued.	Thus,	she	only

needs	to	consider	this	decision:	
Since	-2	beats	-10,	player	2	should	swerve.
Now	go	back	to	player	1’s	decision,	knowing	that	player	2	will	swerve	if

given	the	opportunity	to	move:	
If	player	1	defenestrates,	player	2	swerves,	and	he	earns	1.	If	he	continues,

she	swerves,	and	he	earns	2.	If	he	swerves,	she	swerves,	and	he	earns	0.	Since	2
beats	both	1	and	0,	player	1	should	continue.	Therefore,	the	forward	induction
solution	is	for	player	1	to	continue	and	for	player	2	to	swerve	at	both	her
information	sets.	The	first	player	does	not	even	have	to	make	a	visible	threat	to
get	his	way!
	



2.8.4:	Burned	Battle	of	the	Sexes
Consider	the	following	revised	game	of	battle	of	the	sexes.	Player	1	begins

by	choosing	two	things.	First,	he	decides	whether	to	burn	some	money.	Second,
he	goes	to	either	the	ballet	or	the	fight.	Player	2	observes	whether	player	1
burned	the	money	or	not	but	cannot	see	which	venue	player	1	went	to.	She	then
decides	whether	to	go	to	the	ballet	or	the	fight.	Each	player	earns	4	if	they
coordinate	at	his	or	her	most	preferred	venue,	1	if	they	coordinate	at	his	or	her
least	preferred	venue,	and	0	if	they	go	to	different	locations.	In	addition,	if	player
1	burned	money,	he	subtracts	2	from	his	outcome.

Since	that	is	a	lot	of	information	to	take	in,	let’s	compress	it	into	a	game	tree:

To	recap,	player	1	begins	in	the	center	and	chooses	among	BB,	BF,	NB,	and
NF.	The	first	letter	refers	to	whether	he	Burned	or	did	Not	burn	the	money,
while	the	second	letter	is	whether	he	goes	to	the	Ballet	or	the	Fight.	Player	2
only	observes	whether	player	1	burned	or	not.	If	he	did,	she	selects	between	BB
and	BF.	If	he	did	not,	then	she	picks	NB	or	BF.

Regardless	of	player	1’s	decision	to	burn,	player	2	is	seemingly	in	a
quandary.	Suppose	player	1	does	not	burn.	Player	2	sees	this:

But	this	is	not	much	help.	If	player	1	picked	NB,	player	2’s	decision	is	as
follows:



Since	4	beats	0,	player	2	should	select	NB	as	well.
But	if	played	1	chose	NF	instead:

Player	2	should	match	player	1’s	NF,	as	1	beats	0.
The	same	problem	occurs	if	player	1	burns	at	the	start.	If	he	does,	player	2

sees	this:

Again,	this	information	does	not	help	player	2.	If	player	1	picked	BB,	player
2	faces	the	following	decision:

Once	more,	4	beats	0,	so	player	2	should	select	BB.
But	if	player	1	chose	BF	instead:

Then	player	2	should	pick	BF	as	well.	Thus,	regardless	of	player	1’s	decision
to	burn,	player	2	is	in	the	familiar	battle	of	the	sexes	dilemma.

Surprisingly,	however,	forward	induction	leads	to	a	unique	equilibrium.	To
unravel	the	twisted	logic,	let’s	begin	by	looking	at	player	1’s	payoffs	if	he
chooses	a	non-burning	strategy:

Depending	on	the	venues	the	players	select,	player	1	can	earn	0,	1,	or	4.
Thus,	if	he	does	not	burn,	his	minimum	payoff	is	0;	he	cannot	possibly	earn	a



negative	amount	if	he	picks	NB	or	NF	at	the	start	of	the	game.
Now	consider	player	1’s	payoffs	if	he	burns	at	the	beginning:

Three	of	these	payoffs	are	negative.	The	only	way	he	can	reach	a	positive
expected	utility	is	if	both	players	go	to	the	fight.

Note	that	this	has	an	interesting	implication	regarding	his	BB	strategy.	If
player	1	selects	BB	at	the	start,	he	earns	-1	or	-2	depending	on	what	player	2
does.	Either	way,	he	does	strictly	worse	than	if	he	had	not	burned	at	the
beginning	of	the	game;	all	of	player	1’s	payoffs	are	at	least	0	if	he	does	not	burn.
Therefore,	player	1	would	never	rationally	play	BB.

In	turn,	suppose	player	2	had	a	chance	to	move	at	this	information	set:

We	know	player	2	wants	to	pick	BB	if	player	1	picked	BB,	but	she	wants	to
pick	BF	if	he	picked	BF.	Forward	induction	requires	player	1’s	strategy	to	be
rational.	Since	BB	is	an	irrational	strategy,	player	2	can	safely	assume	player	1
played	BF:

At	this	point,	player	2	plays	BF	as	well,	since	1	beats	0.
Now	consider	player	1’s	choice	if	he	burns:

If	he	burns	and	goes	to	the	fight,	player	2	goes	to	the	fight	as	well,	and	he
earns	2.	If	he	burns	and	goes	to	the	ballet,	he	earns	-2.	As	such,	if	he	burns,	he
must	go	to	the	fight.	In	turn,	he	must	earn	at	least	2	from	the	overall	game.



However,	he	could	potentially	do	better	in	equilibrium	by	not	burning.	With
that	in	mind,	note	that	not	burning	and	going	to	the	ballet	is	now	an	irrational
strategy	for	player	1:

If	player	1	selects	NB,	he	ultimately	earns	1	or	0.	Both	of	these	payoffs	are
less	than	the	2	that	he	could	earn	from	BF.	Therefore,	player	1	cannot	play	NB.

Given	that,	suppose	player	2	reaches	this	information	set:

Player	2	cannot	see	whether	player	1	selected	NB	or	NF.	However,	through
the	long	line	of	above	reasoning,	player	2	can	infer	that	player	1	would	never
play	NB.	As	such,	if	she	is	at	this	information	set,	she	knows	player	1	must	have
played	NF.	Therefore,	she	can	narrow	her	decision	down	to	this:

If	player	2	plays	NF,	she	earns	1;	if	she	plays	NB,	she	earns	0.	Since	1	beats
0,	she	chooses	NF.

Finally,	consider	player	1’s	optimal	decision	at	the	beginning	of	the	game.
Regardless	of	his	decision	to	burn	money,	he	knows	player	2	will	go	to	the	fight.
Therefore,	he	faces	the	following	decision:



Since	4	is	the	greatest	payoff,	player	1	selects	NF.	Thus,	the	ability	to	burn
money	delivers	player	1	his	best	outcome	even	though	he	never	actually	burns
any	in	equilibrium.
	



Takeaway	Points
1)	Forward	induction	assumes	all	past	play	was	rational.
2)	The	inferences	players	make	using	forward	induction	require	extremely
sophisticated	thinking.



Lesson	3.1:	Probability	Distributions
In	this	chapter,	we	will	investigate	matrix	games	far	more	complex	than

what	we	saw	in	Chapter	1.	There	will	be	two	new	levels	of	difficulty.	First,	we
will	abandon	specific	numerical	payoffs	to	generalize	our	games	as	much	as
possible.	For	instance,	consider	the	strategic	interaction	between	a	striker	and	a
goalie	during	a	soccer	penalty	kick.	The	interaction	is	essentially	a	guessing
game;	the	striker	does	not	want	the	goalie	to	dive	in	the	direction	of	the	kick,	but
the	goalie	does.	Suppose	the	striker	has	perfect	aim	to	the	right	side	but	only
shoots	on	target	on	the	left	side	with	probability	x,	where	0	<	x	<	1.	Then	the
matrix	looks	like	this:

We	have	never	encountered	a	variable	inside	of	a	payoff	matrix	before.	At
present,	we	cannot	solve	this	game.

In	this	chapter,	we	will	also	see	games	that	have	mixed	strategy	Nash
equilibria	utilizing	more	than	two	pure	strategies.	Rock-paper-scissors	is	an
example:

If	either	player	develops	a	pattern	in	rock-paper-scissors,	his	or	her	opponent
can	exploit	it.	Consequently,	in	equilibrium,	the	players	must	randomize	among
all	three	strategies.	However,	we	only	know	how	to	solve	for	mixed	strategies
involving	two	pure	strategies.	Again,	at	present,	we	are	helpless	here.

Over	the	course	of	this	chapter,	we	will	frequently	work	with	probabilities	in
the	form	of	mixed	strategies.	These	probabilities	will	not	be	as	friendly	as
before,	as	they	will	often	span	three	strategies	or	include	variables.	For	example,
the	probability	x/(x	+	y	+	z)	is	meaningless	at	the	moment	but	will	eventually
become	second	nature.

In	turn,	we	must	have	a	decent	understanding	of	probability	theory	before
moving	on.	To	that	end,	this	lesson	teaches	two	things.	Primarily,	we	will	learn



about	probability	distributions—what	they	are,	where	we	have	seen	them	before,
and	why	we	need	to	know	about	them.	Second,	we	will	create	a	way	to	test
whether	numerical	expressions	form	a	valid	probability	distribution.	If	they	do,
then	we	can	use	those	probabilities	for	our	mixed	strategies.	If	not,	we	can
dismiss	certain	potential	mixed	strategy	Nash	equilibria.

	



3.1.1:	The	Golden	Rules	of	Probability	Distributions
A	probability	distribution	is	a	set	of	events	and	the	probability	each	event	in

the	set	occurs.	For	example,	when	I	flip	a	coin,	the	probability	it	lands	on	heads
is	1/2	and	the	probability	it	lands	on	tails	is	also	1/2.	When	I	roll	a	die,	the
probability	it	lands	on	1	is	1/6,	the	probability	it	lands	on	2	is	1/6,	the	probability
it	lands	on	3	is	1/6,	and	so	forth.	When	I	spin	a	roulette	wheel,	the	probability	the
ball	stops	on	a	red	space	is	18/38,	the	probability	it	stops	on	a	black	space	is
18/38,	and	the	probability	it	lands	on	a	green	space	is	2/38.

The	past	few	sentences	simply	linked	events	(the	side	of	the	coin	landing
upward,	the	side	of	the	die	coming	on	top,	the	ball	stopping	on	a	particular	color)
to	their	respective	probabilities.	Probability	distributions	are	that	simple.

Two	golden	rules	of	probability	distributions	maintain	their	mathematical
tractability:
	

1)	All	events	occur	with	probability	no	less	than	0.
2)	The	sum	of	all	probabilities	of	all	events	equals	1.
	
Although	these	rules	are	basic,	four	implications	follow	from	them.	First,	no

probability	can	be	greater	than	1.	If	this	were	the	case,	then	there	would	have	to
be	some	events	that	occur	with	negative	probability	for	all	of	the	probabilities	to
sum	to	1.	However,	such	an	event	violates	the	first	golden	rule	that	requires	all
probabilities	to	be	at	least	0.	Substantively,	this	implication	makes	perfect	sense.
After	all,	some	event	cannot	occur	more	than	100%	of	the	time.

Second,	probability	distributions	cannot	leave	us	wondering	what	else	might
happen.	For	example,	a	probability	distribution	cannot	only	say	that	the	world
will	end	tomorrow	with	probability	1/100.	Such	a	distribution	does	not	sum	to	1.
Perhaps	the	person	who	wrote	the	distribution	meant	that	the	world	will	not	end
with	probability	99/100,	but	we	need	to	know	that	explicitly.

Game	theorists	sometimes	play	loosely	with	this	rule.	Mixed	strategies	are
probability	distributions.	They	associate	events	(the	pure	strategies	a	player
might	choose)	with	a	probability.	When	writing	equilibria,	we	will	often	state
something	like	“player	1	plays	heads	with	probability	1/3	and	player	2	plays	left
with	probability	4/5.”	Technically,	these	are	not	valid	probability	distributions.
What	does	player	1	do	the	remaining	2/3	of	the	time?	What	does	player	2	do	the
remaining	1/5	of	the	time?

Implicitly,	we	might	mean	that	player	1	plays	down	and	player	2	plays	right
with	the	remaining	probabilities.	While	imprecise,	the	shortcut	is	serviceable	in
the	realm	of	simple	2x2	matrix	games.	However,	in	this	chapter,	we	will
consider	games	where	players	might	want	to	mix	among	more	than	two



strategies.	If	player	1	can	select	from	up,	middle,	or	down,	writing	“player	1
selects	up	with	probability	1/3”	is	insufficient.	We	must	know	what	percentage
of	the	time	he	plays	middle	and	what	percentage	of	the	time	he	plays	down.

Third,	the	fact	that	the	sum	of	the	probabilities	of	all	events	equals	1	gives	us
a	convenient	way	to	solve	for	an	unknown	probability.	Suppose	a	probability
distribution	is	valid,	but	we	do	not	know	the	probability	of	one	of	the	events.
Since	the	probabilities	must	sum	to	1,	the	remaining	probability	equals	1	minus
the	sum	of	the	probabilities	of	the	rest	of	the	events.	This	is	why	we	only	solve
for	σup	rather	than	σup	and	σdown	simultaneously	in	a	2x2	game;	we	know	mixed
strategies	form	valid	probability	distributions,	so	σdown	must	be	equal	to	1	–	σup.
Again,	while	this	is	simple	in	the	two	strategy	case,	we	will	be	working	with
more	difficult	examples	in	this	chapter	involving	three	strategies.

Fourth,	probabilities	can	be	0	or	1.	An	event	with	probability	0	never	occurs,
while	an	event	with	probability	1	always	occurs.	In	fact,	on	a	technical	level,
pure	strategies	are	mixed	strategies	because	of	this	feature.	The	probability
distribution	for	the	“mixture”	here	is	1	on	the	pure	strategy	played	in	equilibrium
and	0	on	all	other	strategies.
	



3.1.2:	Testing	the	Validity	of	a	Probability
Consider	the	following	game:

This	is	a	generalized	prisoner’s	dilemma.	We	will	formally	solve	it	in	Lesson
3.2.	Ultimately,	we	want	to	show	whether	a	potential	mixed	strategy	Nash
equilibrium	is	valid.	To	do	this,	we	must	solve	for	mixtures	that	are	an
amalgamation	of	letters	rather	than	numbers.	But	to	confirm	the	integrity	of	our
solutions,	we	need	to	show	that	the	probabilities	form	a	valid	probability
distribution.

For	example,	consider	the	fraction	x/y,	where	x	and	y	could	potentially	be
any	real	number.	Let’s	think	about	circumstances	that	would	show	a	violation	of
the	rules	of	probability	distributions.

First,	y	cannot	equal	0.	If	it	did,	then	x/y	would	be	undefined.	We	cannot
sum	an	undefined	element,	so	any	such	probability	is	invalid.

Can	x	be	0?	Sure,	as	long	as	y	is	not	as	well.	Any	fraction	0/y	reduces	to	just
0.	The	first	of	the	golden	rules	of	probability	distributions	allowed	for	events	to
occur	with	probability	0.	So	the	probability	is	legitimate	if	trivial.

Next,	if	x	is	not	equal	to	0,	x	and	y	must	both	be	positive	or	both	be
negative.	If	one	is	positive	and	the	other	is	negative,	then	we	have	a	negative
probability.	But	probabilities	cannot	be	negative,	so	we	would	have	to	reject
such	a	figure.	In	contrast,	a	positive	number	divided	by	a	positive	number	yields
a	positive	number.	A	negative	number	divided	by	a	negative	number	cancels	out
the	negations	and	yields	a	positive	number	as	well.	Thus,	these	last	two	cases	are
permissible.

Finally,	the	magnitude	of	x	must	be	less	than	or	equal	to	the	magnitude	of	y.
For	example,	suppose	both	x	and	y	were	positive.	If	x	were	greater	than	y,	then
the	probability	would	be	greater	than	1.	But	probabilities	cannot	be	greater	than
1,	so	this	would	be	invalid.

This	rule	is	a	little	more	tricky	if	x	and	y	are	both	negative.	Since	we	care
about	magnitude	here,	x	must	be	greater	than	or	equal	to	y	for	the	probability	to
be	valid.	Take,	for	example,	-1/-3.	Clearly	this	is	a	valid	probability	distribution
because	it	reduces	to	1/3,	even	though	-1	is	greater	than	-3.

Thus,	we	must	be	extra	careful	with	this	step	and	employ	the	appropriate
test.	If	x	and	y	are	both	positive,	we	must	verify	that	y	≥	x.	But	if	x	and	y	are
both	negative,	we	need	to	ensure	x	≥	y.	We	must	not	mix	up	these	tests,	or	we
usually	draw	an	incorrect	conclusion.



In	any	case,	we	now	know	how	to	test	whether	a	figure	can	be	a	part	of	a
valid	probability	distribution.	The	process	is	merely	three	steps:

	
1)	If	denominator	is	0,	the	probability	is	invalid.	If	it	is	not,	advance	to	the
second	step.
2)	If	the	numerator	is	zero,	the	probability	is	valid,	and	the	third	step	is
irrelevant.	If	it	is	positive	and	the	denominator	is	positive,	advance	to	the
third	step.	If	it	is	negative	and	the	denominator	is	negative,	advance	to	the
third	step.	If	one	is	positive	and	the	other	is	negative,	the	probability	is
invalid.
3)	If	the	absolute	value	of	the	numerator	is	less	than	or	equal	to	the	absolute
value	of	the	denominator,	the	probability	is	valid.	Otherwise,	it	is	not.
	
The	next	two	sections	will	put	this	plan	into	action	repeatedly.	If	these	rules

about	probability	distributions	are	unclear	now,	you	will	have	plenty	of	practice
ahead.

	



Takeaway	Points
1)	A	probability	distribution	is	a	set	of	events	and	the	associated	probability
that	each	even	occurs.
2)	Mixed	strategies	are	probability	distributions	over	pure	strategies.
3)	All	probabilities	in	a	probability	distribution	cannot	be	less	than	zero	and
must	sum	to	1.



Lesson	3.2:	Mixed	Strategy	Nash	Equilibria	in
Generalized	Games

This	lesson	offers	our	first	look	at	generalize	games.	We	will	start	off	easy
by	analyzing	battle	of	the	sexes.	Everything	behaves	nicely	in	that	game—the
pure	strategy	Nash	equilibria	are	easy	to	find,	and	the	mixed	strategy	algorithm
produces	a	sensible	result.	However,	we	will	then	cover	the	prisoner’s	dilemma
and	deadlock	to	see	how	to	derive	contradictions	when	we	replace	numbers	with
variables.
	



3.2.1:	Generalized	Battle	of	the	Sexes
In	Lesson	1.6,	we	solved	the	following	game	of	battle	of	the	sexes:	

Battle	of	the	sexes	has	two	pure	strategy	Nash	equilibria,	<up,	left>	and
<down,	right>,	and	a	mixed	strategy	Nash	equilibrium	in	which	player	1	played
up	with	probability	1/3	and	player	2	played	left	with	probability	2/3.

In	Lesson	2.8,	we	solved	an	extensive	form	game	of	battle	of	the	sexes	in
which	player	1	could	burn	money	before	making	a	play.	However,	the	payoffs
were	slightly	adjusted—a	player	who	went	to	his	or	her	more	preferred	form	of
entertainment	and	met	his	or	her	partner	there	earned	4	instead	of	2.	If	we	take
away	the	burning	money	aspect	of	the	game	and	convert	the	extensive	form	to	a

matrix,	we	arrive	at	this:	
The	modified	game	has	the	same	look	and	feel	as	the	original	battle	of	the

sexes.	The	players	still	earn	0	if	they	fail	to	coordinate,	but	one	each	one	prefers
going	to	a	different	location.

It	should	be	obvious	that	<up,	left>	and	<down,	right>	are	still	pure	strategy
Nash	equilibria	as	well.	However,	the	mixed	strategy	Nash	equilibrium	is
different.	Let’s	solve	for	player	1’s	mixed	strategy	that	leaves	player	2

indifferent	between	left	and	right:	
If	player	2	moves	left,	she	earns	4	with	probability	σup	and	0	with	probability

1	–	σup.	As	an	equation:	EUleft	=	(σup)(4)	+	(1	–	σup)(0)	Let’s	check	right:	

If	player	2	moves	right,	she	earns	0	with	probability	σup	and	1	with
probability	1	–	σup.	As	an	equation:	EUright	=	(σup)(0)	+	(1	–	σup)(1)	Now	we	set
her	expected	utility	for	left	equal	to	her	expected	utility	for	right	and	solve	for
σup:	EUleft	=	EUright	EUleft	=	(σup)(4)	+	(1	–	σup)(0)	EUright	=	(σup)(0)	+	(1	–	σup)(1)



(σup)(4)	+	(1	–	σup)(0)	=	(σup)(0)	+	(1	–	σup)(1)	4σup	=	1	–	σup	5σup	=	1
σup	=	1/5
	

So	in	the	mixed	strategy	Nash	equilibrium,	player	1	moves	up	with
probability	1/5	and	down	with	probability	4/5.

Let’s	move	on	to	player	2’s	mixed	strategy:	
If	player	1	moves	up,	he	earns	1	with	probability	σleft	and	0	with	probability

1	–	σleft.	As	an	equation:	EUup	=	(σleft)(1)	+	(1	–	σleft)(0)	Now	for	down:

If	player	1	selects	down,	he	earns	0	with	probability	σleft	and	4	with
probability	1	–	σleft.	As	an	equation:	EUdown	=	(σleft)(0)	+	(1	–	σleft)(4)	Once	again,
to	find	player	2’s	mixed	strategy	that	leaves	player	1	indifferent	between	up	and
down,	we	set	these	two	expected	utilities	equal	to	each	other	and	solve	for	σleft:
EUup	=	EUdown	EUup	=	(σleft)(1)	+	(1	–	σleft)(0)	EUdown	=	(σleft)(0)	+	(1	–	σleft)(4)
(σleft)(1)	+	(1	–	σleft)(0)	=	(σleft)(0)	+	(1	–	σleft)(4)	σleft	=	4	–	4σleft	5σleft	=	4
σleft	=	4/5
	

So	in	the	mixed	strategy	Nash	equilibrium,	player	2	goes	left	with
probability	4/5	and	down	with	probability	1/5.	Thus,	increasing	the	value	of	the
most	preferred	outcome	changes	the	mixed	strategy	Nash	equilibrium.

Notice	that	we	can	make	infinitely	many	of	such	changes	to	the	game.
Instead	of	a	2	or	a	4	for	the	most	preferred	outcome,	we	could	switch	it	to	1.5,	3,
π,	13,	or	100.	Alternatively,	we	change	the	payoff	for	not	coordinating	from	0	to
-4,	-8,	-15,	-16,	-23,	or	-42.	Every	time	we	change	the	payoffs,	no	matter	how
trivially	small	the	differences	are,	we	must	recalculate	the	mixed	strategy	Nash
equilibrium.

If	we	are	going	to	encounter	many	different	versions	of	battle	of	the	sexes,	it
would	help	if	we	could	derive	a	simple	formula	for	the	mixed	strategy	Nash
equilibrium.	At	present,	we	only	have	the	mixed	strategy	algorithm.	That
algorithm	eventually	finds	the	MSNE,	but	it	requires	a	burdensome	number	of
calculations	each	time	we	run	it.	Ideally,	we	would	like	to	make	the	algorithmic
calculations	once	and	be	able	to	apply	the	results	every	time	we	encounter	an
altered	version	of	the	game.

Fortunately,	we	can	make	such	an	abstraction.	All	we	have	to	do	is	replace



the	distinct	numbers	with	exogenous	variables:	
These	variables	are	exogenous	because	they	come	from	outside	the	game.

The	players	do	not	choose	them.	(If	they	players	chose	the	values,	they	would	be
endogenous	variables.)	Instead,	the	players	have	these	payoffs	and	know	them
going	into	the	game,	as	though	they	were	innate	preferences.

Note	that	if	we	create	a	rule	that	A	>	B	>	C	and	a	>	b	>	c,	we	have	the
correct	preference	ordering	for	battle	of	the	sexes.	In	the	original	game,	A	=	a	=
2,	B	=	b	=	1,	and	C	=	c	=	0.	In	the	modified	version,	we	changed	A	and	a	to	4.
Regardless	of	the	specific	values,	the	players	are	trying	to	coordinate	at	a
specific	location,	though	their	most	preferred	outcomes	differ.

Another	useful	feature	of	this	general	form	is	that	we	can	easily	consider
different	payoffs	for	each	player.	Thus,	player	1’s	payoffs	are	in	capital	letters
while	player	2’s	payoffs	are	in	lower	case.	These	payoffs	may	be	the	same	as
they	were	in	the	first	two	examples,	but	they	can	also	be	different.	For	instance,
player	1	could	earn	4	for	coordinating	at	the	fight	(as	in	the	burned	version)
while	player	2	might	earn	2	for	coordinating	at	the	ballet	(as	in	the	original
version).	As	it	turns	out,	these	differences	do	not	make	our	generalized	analysis
any	more	difficult.

Let’s	solve	the	game.	The	process	is	the	same	as	before.	The	only	extra
difficulty	is	that	we	have	variables	to	work	with	instead	of	actual	numbers.	This
will	be	a	slight	inconvenience	to	us.	However,	as	long	as	we	understand	that
these	variables	behave	exactly	how	ordinary	numbers	do,	we	will	be	fine.

First,	let’s	mark	the	best	responses	of	the	game,	beginning	with	how	player	1

should	respond	to	player	2	selecting	left:	
Recall	that	B	>	C.	Therefore,	player	1’s	best	response	is	to	play	up,	so	B

earns	the	asterisk.
Now	for	right:

A	beats	C.	Therefore,	A	has	the	asterisk.



Switching	gears,	let’s	find	player	2’s	best	responses,	beginning	with	player	1

choosing	up:	
Once	again,	a	beats	c.	As	such,	left	is	player	2’s	best	response,	and	it

receives	an	asterisk.
Now	for	down:

This	time,	b	earns	the	asterisk,	as	b	>	c.
Putting	all	of	these	best	responses	together,	we	arrive	at	the	following:	

Both	<up,	left>	and	<down,	right>	are	mutual	best	responses,	so	they	are
pure	strategy	Nash	equilibria.	Despite	the	variables,	we	found	PSNE	using	the
exact	same	method	as	before.

We	still	need	to	check	for	MSNE.	Solving	for	mixed	strategies	is	more
difficult	than	finding	PSNE,	but	the	process	is	manageable.	Let’s	start	with
player	1’s	mixed	strategy	that	leaves	player	2	indifferent	between	left	and	right.

First,	we	find	her	expected	utility	for	left:	
If	player	2	plays	left,	she	earns	a	with	probability	σup	and	c	with	probability	1

–	σup.	As	an	equation:	EUleft	=	(σup)(a)	+	(1	–	σup)(c)	Now	for	right:

This	time,	player	2	earns	c	with	probability	σup	and	b	with	probability	1	–	σup.
As	an	equation:	EUright	=	(σup)(c)	+	(1	–	σup)(b)	Just	as	before,	we	set	player	2’s
expected	utility	for	left	equal	to	her	expected	utility	for	right	and	solve	for	σup:
EUleft	=	EUright	EUleft	=	(σup)(a)	+	(1	–	σup)(c)	EUright	=	(σup)(c)	+	(1	–	σup)(b)	(σup)
(a)	+	(1	–	σup)(c)	=	(σup)(c)	+	(1	–	σup)(b)	aσup	+	c	–	cσup	=	cσup	+	b	–	bσup	The
next	steps	can	be	confusing.	We	must	bunch	all	of	the	terms	with	σup	on	one	side



of	the	equation	and	all	those	without	on	the	other	side:	aσup	+	c	–	cσup	=	cσup	+	b
–	bσup	aσup	+	bσup	–	2cσup	=	b	–	c	Now	we	can	use	the	distributive	property	of
multiplication	to	take	out	each	instance	of	σup	from	everything	on	the	left	side	of
the	equation:	aσup	+	bσup	–	2cσup	=	b	–	c	σup(a	+	b	–	2c)	=	b	–	c	To	solve	for	σup,
we	only	need	to	divide	both	sides	by	a	+	b	–	2c.	However,	there	is	a	caveat	here:
we	cannot	divide	by	zero.	As	such,	if	a	+	b	–	2c	=	0,	we	cannot	complete	this
task.

Fortunately,	a	+	b	–	2c	cannot	equal	zero	in	this	instance.	In	fact,	it	must	be
greater	than	zero:	a	+	b	–	2c	>	0
a	+	b	–	c	–c	>	0
a	–	c	>	c	–	b
	

Since	a	>	c,	a	–	c	is	positive.	On	the	other	hand,	since	c	<	b,	c	–	b	is	negative.
A	positive	number	is	always	greater	than	a	negative	number,	so	the	inequality
holds.	Therefore,	we	may	divide	by	a	+	b	–	2c:	σup(a	+	b	–	2c)	=	b	–	c	σup	=	(b	–
c)/(a	+	b	–	2c)	Before	concluding	that	player	1	plays	up	with	probability	(b	–
c)/(a	+	b	–	2c)	in	the	MSNE,	we	must	confirm	the	validity	of	the	probability
distribution.	Specifically,	we	must	check	whether	(b	–	c)/(a	+	b	–	2c)	is	between
0	and	1.	The	previous	lesson	explained	the	three	step	process;	now	we	must
implement	it.

First,	we	need	to	know	whether	the	denominator	is	zero.	Here,	the
denominator	is	a	+	b	–	2c.	But	when	we	divided	by	that	number,	we	already
showed	that	it	is	greater	than	zero.	So	we	are	covered	for	this	part.

The	second	step	is	to	verify	that	the	numerator	and	denominator	are	both
positive	or	both	negative.	Since	we	know	the	denominator	is	positive,	we	need	to
check	whether	the	numerator	is	as	well:	b	–	c	>	0
b	>	c
	

By	assumption,	b	is	greater	than	c,	so	b	–	c	is	positive.
Finally,	we	must	check	whether	the	numerator	is	less	than	the	denominator:

b	–	c	<	a	+	b	–	2c	0	<	a	–	c
c	<	a

	
Since	c	is	less	than	a	by	definition,	the	inequality	holds.	The	numerator	is

less	than	the	denominator.
The	three-step	process	checked	out,	so	σup	=	(b	–	c)/(a	+	b	–	2c)	is	a	valid

probability.	Knowing	that	the	probability	distribution	must	sum	to	1,	we	can
easily	solve	for	the	probability	that	player	1	selects	down:	σdown	=	1	–	σup	σup	=	(b



–	c)/(a	+	b	–	2c)	σdown	=	1	–	(b	–	c)/(a	+	b	–	2c)	σdown	=	(a	+	b	–	2c)/(a	+	b	–	2c)	–
(b	–	c)/(a	+	b	–	2c)	σdown	=	(a	–	c)/(a	+	b	–	2c)	We	need	not	verify	the	validity	of
σdown;	the	fact	that	σup	is	a	valid	probability	and	σdown	=	1	–	σup	preserves	the
validity	of	σdown.	Together,	they	form	a	valid	probability	distribution.

Moving	on,	we	must	to	repeat	this	process	for	player	2’s	mixed	strategy.

Let’s	start	with	player	1’s	expected	utility	for	up:	
Player	1	earns	B	with	probability	σleft	and	C	with	probability	1	–	σleft.	As	an

equation:	EUup	=	(B)(σleft)	+	(C)(1	–	σleft)	Now	for	down:

Player	1	earns	C	with	probability	σleft	and	A	with	probability	1	–	σleft.	As	an
equation:	EUdown	=	(C)(σleft)	+	(A)(1	–	σleft)	We	set	player	1’s	expected	utility	for
up	equal	to	his	expected	utility	for	down	and	solve	for	σleft:	EUup	=	EUdown	EUup	=
(B)(σleft)	+	(C)(1	–	σleft)	EUdown	=	(C)(σleft)	+	(A)(1	–	σleft)	(B)(σleft)	+	(C)(1	–	σleft)
=	(C)(σleft)	+	(A)(1	–	σleft)	Bσleft	+	C	–	Cσleft	=	Cσleft	+	A	–	Aσleft	As	before,	we
group	all	terms	with	σleft	in	them	on	one	side	and	the	rest	on	the	other:	Bσleft	+	C
–	Cσleft	=	Cσleft	+	A	–	Aσleft	Aσleft	+	Bσleft	–	2Cσleft	=	A	–	C
	

Then	we	pull	out	the	σleft	from	each	term	on	the	left	side	of	the	equation:
Aσleft	+	Bσleft	–	2Cσleft	=	A	–	C
σleft(A	+	B	–	2C)	=	A	–	C
	

Can	we	divide	by	A	+	B	–	2C?	Well,	for	the	same	reason	that	a	+	b	–	2c	is
greater	than	zero,	we	know	that	A	+	B	–	2C	is	also	greater	than	zero.	So	we	may
divide	as	normal:	σleft(A	+	B	–	2C)	=	A	–	C
σleft	=	(A	–	C)/(A	+	B	–	2C)	Again,	we	must	check	whether	(A	–	C)/(A	+	B	–	2C)
is	a	valid	probability	distribution.	We	know	the	denominator	is	positive	from
when	we	divided	by	A	+	B	–	2C,	so	the	next	step	is	to	check	whether	the
numerator	is	also	positive:	A	–	C	>	0
A	>	C

	
Since	A	>	C	by	definition,	this	holds.
Finally,	we	must	ensure	the	numerator	is	less	than	the	denominator:	A	–	C	<

A	+	B	–	2C



0	<	B	–	C
C	<	B
	

C	is	less	than	B	by	definition,	so	that	works	out.	The	mixed	strategy	forms	a
valid	probability	distribution.

Battle	of	the	sexes	demonstrated	how	to	solve	for	general	mixed	strategy
Nash	equilibria	when	everything	goes	right.	In	practice,	things	often	go	wrong.
The	next	two	sections	show	how	to	spot	some	of	those	problems	and	explain
why	the	mixed	strategy	algorithm	does	not	always	work	perfectly.
	



3.2.2:	Generalized	Prisoner’s	Dilemma
Recall	back	to	our	very	first	lesson	on	strict	dominance,	which	featured	the

prisoner’s	dilemma	and	deadlock.	Neither	of	these	games	had	a	mixed	strategy
Nash	equilibrium.	Will	this	remain	true	when	we	generalize	the	game?	How	will
we	know	that	a	MSNE	does	not	exist	when	we	are	not	even	working	with
numbers?	This	lesson	contains	the	answers:	there	still	will	not	be	any	MSNE	in
the	generalized	games,	and	we	can	prove	this	using	our	knowledge	of	probability
distributions.

Let’s	start	with	the	prisoner’s	dilemma:	
This	time	around,	T	>	R	>	P	>	S	and	t	>	r	>	p	>	s.	You	can	remember	the

ordering	like	this:	T	is	for	Temptation,	which	is	the	payoff	a	player	receives
when	he	rats	out	his	opponent	and	the	opponent	remains	silent;	R	is	for	Reward,
which	is	the	good	payoff	the	players	receive	when	they	both	remain	silent;	P	is
for	Punishment,	which	is	the	bad	payoff	both	players	receive	when	they	both	rat
out	the	other;	and	S	is	for	Sucker,	which	is	the	payoff	for	a	player	when	he
remains	silent	and	the	opponent	rats	him	out.	(These	naming	conventions	come
from	The	Evolution	of	Cooperation	by	Robert	Axelrod,	which	is	the	seminal
book	on	the	prisoner’s	dilemma.	It	is	extremely	accessible	to	readers	new	to
game	theory.	As	such,	I	give	it	my	highest	recommendation.)	Just	as	before,	we
can	see	that	up	and	left	(the	strategies	that	represent	staying	silent)	are	strictly
dominated.	Let’s	show	this	for	player	1.	Suppose	player	2	moved	left:	

Since	T	beats	R,	player	1	should	play	down	in	this	contingency.

Now	suppose	player	2	played	right:	
Again,	player	1	ought	to	select	down,	as	P	beats	S.	Since	down	provides	a

greater	payoff	than	up	regardless	of	player	2’s	strategy,	down	strictly	dominates
up.

Let’s	switch	perspectives	and	look	at	player	2’s	decision.	Suppose	player	1
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chose	up:	
Player	2	should	select	right,	as	t	beats	r.
Alternatively,	consider	player	2’s	best	response	to	down:	

Once	more,	right	is	a	better	choice	for	player	2,	as	p	is	greater	than	s.	Thus,
right	strictly	dominates	left.

From	chapter	1,	we	know	no	mixed	strategy	Nash	equilibrium	exists.	Players
cannot	use	strictly	dominated	strategies	in	equilibrium.	As	such,	the	players
cannot	choose	up	or	left	in	the	generalized	prisoner’s	dilemma.	That	leaves	a
single	playable	strategy	for	both	players,	meaning	they	cannot	mix	in
equilibrium.

We	can	also	show	no	mixed	strategy	Nash	equilibrium	exists	by
demonstrating	that	the	indifference	conditions	from	the	mixed	strategy	algorithm
produce	invalid	mixed	strategies.	When	solving	games	with	variables	instead	of
numbers,	it	is	easy	to	overlook	instances	of	strict	dominance.	Fortunately,	when
we	run	the	mixed	strategy	algorithm,	we	will	eventually	encounter	a
contradiction.	Thus,	even	if	we	overlook	strict	dominance	the	first	time,	the
algorithm	will	eventually	save	us.

To	see	this	in	practice,	consider	player	2’s	expected	utility	for	playing	left	as

a	function	of	player	1’s	mixed	strategy	σup:	
Player	2	earns	r	with	probability	σup	and	s	with	probability	1	–	σup.	As	an

equation:	EUleft	=	(r)(σup)	+	(s)(1	–	σup)	Let’s	switch	to	right:	
If	player	2	selects	right	as	a	pure	strategy,	she	earns	t	with	probability	σup	and

p	with	probability	1	–	σup.	As	an	equation:	EUright	=	(t)(σup)	+	(p)(1	–	σup)	To	find
player	1’s	mixed	strategy	that	leaves	player	2	indifferent	between	her	pure
strategies,	we	set	player	2’s	expected	utility	for	left	equal	to	her	expected	utility
for	right	and	solve	for	σup:	EUleft	=	EUright	EUleft	=	(r)(σup)	+	(s)(1	–	σup)	EUright	=
(t)(σup)	+	(p)(1	–	σup)	(r)(σup)	+	(s)(1	–	σup)	=	(t)(σup)	+	(p)(1	–	σup)	rσup	+	s	–	sσup



=	tσup	+	p	–	pσup	rσup	+	pσup	–	sσup	–	tσup	=	p	–	s	σup(r	+	p	–	s	–	t)	=	p	–	s	Before
we	solve	for	σup,	we	must	check	whether	r	+	p	–	s	–	t	can	equal	zero.	We	can
rewrite	it	as	(p	–	s)	+	(r	–	t).	Since	p	>	s,	p	–	s	is	positive.	Similarly,	since	t	>	r,	r
–	t	is	negative.	When	we	sum	a	positive	number	and	a	negative	number,	three
things	are	possible:	the	result	is	positive,	the	result	is	negative,	or	the	result	is
zero.	All	three	of	these	cases	can	occur	in	practice	depending	on	the	size	of	each
of	the	numbers.	This	leaves	us	with	three	separate	cases	to	check.
	
r	+	p	–	s	–	t	=	0

Let’s	start	with	the	tricky	one.	When	r	+	p	–	s	–	t	=	0,	we	cannot	divide	by	it
to	solve	for	σup.	However,	we	can	substitute	0	into	the	equation	to	see	that	there
is	going	to	be	a	problem:	σup(r	+	p	–	s	–	t)	=	p	–	s	r	+	p	–	s	–	t	=	0
σup(0)	=	p	–	s	0	=	p	–	s	s	=	p	Recall	that	p	is	greater	than	s.	But	the	mixed
strategy	algorithm	told	us	that	s	is	equal	to	p.	Nonsense!	This	is	our	algorithm’s
way	of	telling	us	that	no	probability	distribution	can	make	player	2	indifferent
between	her	two	pure	strategies.	Thus,	when	r	+	p	–	s	–	t	=	0,	no	MSNE	exists.
	
r	+	p	–	s	–	t	<	0

If	r	+	p	–	s	–	t	is	less	than	zero,	we	can	divide	by	it.	Let’s	do	just	that:	σup(r	+
p	–	s	–	t)	=	p	–	s	σup	=	(p	–	s)/(r	+	p	–	s	–	t)	Now	we	have	to	check	whether	(p	–
s)/(r	+	p	–	s	–	t)	can	be	part	of	a	valid	probability	distribution.	If	so,	the
numerator	and	denominator	must	both	be	positive	or	both	be	negative.	We	know
p	–	s	is	positive,	so	r	+	p	–	s	–	t	must	be	positive	as	well.	But	we	just	assumed
that	r	+	p	–	s	–	t	<	0,	so	the	denominator	is	negative.	When	we	divide	a	positive
number	by	a	negative	number,	we	end	up	with	a	negative	number.	Probabilities
cannot	be	negative.	Thus,	no	mixed	strategy	will	work	in	this	case.
	
r	+	p	–	s	–	t	>	0

Finally,	suppose	r	+	p	–	s	–	t	is	positive.	We	can	therefore	divide	by	it	just	as
we	did	before:	σup(r	+	p	–	s	–	t)	=	p	–	s	σup	=	(p	–	s)/(r	+	p	–	s	–	t)	We	know	the
numerator	and	denominator	are	both	positive.	The	final	step	is	to	check	whether
the	numerator	is	less	than	the	denominator:	p	–	s	<	r	+	p	–	s	–	t	0	<	r	–	t	t	<	r
However,	since	t	>	r,	the	numerator	is	greater	than	the	denominator.	Thus,	(p	–
s)/(r	+	p	–	s	–	t)	is	greater	than	1	and	in	turn	is	not	a	valid	probability.	So	this
case	fails	as	well.

Combining	all	three	of	these	cases	together,	we	know	that	regardless	of	the
specific	values	of	the	exogenous	variables,	player	1	cannot	induce	player	2	to	be
indifferent	between	her	pure	strategies.	Specifically,	she	will	always	prefer	to



play	right,	since	right	strictly	dominates	left.
We	could	run	through	the	same	process	for	player	2’s	mixed	strategy,	and

we	would	find	the	same	thing;	after	all,	the	game	is	symmetric.	Therefore,	no
player	can	mix	in	this	game,	leaving	<down,	left>	as	the	unique	Nash
equilibrium.
	



3.2.3:	Generalized	Deadlock
Let’s	reinforce	these	same	principles	with	deadlock.	Recycling	the	payoffs

from	the	prisoner’s	dilemma,	let	T	>	R	>	P	>	S	and	t	>	r	>	p	>	s.	If	we	switch
each	player’s	temptation	payoff	for	the	sucker’s	payoff,	deadlock	results:	

This	time	around,	up	strictly	dominates	down	and	left	strictly	dominates
right.	Let’s	confirm	player	2’s	strict	dominance,	starting	with	her	response	to	up:

Player	2	earns	r	if	she	moves	left	and	s	if	she	chooses	right.	Since	r	>	s,	left
is	her	best	response.

Now	consider	down:	
This	time,	player	2	earns	t	for	left	and	p	for	right.	Because	t	>	p,	her	best

response	is	left.	Thus,	she	ought	to	play	left	regardless	of	what	player	1	selects.
Player	1	has	a	similar	dominant	strategy.	Suppose	player	1	selected	left:	

Since	R	>	S,	player	1	plays	up	in	response	to	left.
Now	consider	player	1’s	options	if	player	2	chooses	right:	

He	still	prefers	up,	as	T	>	P.
Compiling	these	responses,	we	know	player	1	should	select	up	regardless	of

player	2’s	strategy.	In	other	words,	up	strictly	dominates	down.	Since	left	strictly
dominates	right	for	player	2,	<up,	left>	is	the	unique	Nash	equilibrium	of	the
game.

But	even	if	we	missed	the	strict	dominance	solution,	the	mixed	strategy
algorithm	will	come	to	our	rescue.	To	see	this,	we	can	calculate	player	1’s
expected	utility	as	a	function	of	player	2’s	mixed	strategy	σleft.



To	start,	suppose	player	1	chose	up:	
Here,	he	earns	R	with	probability	σleft	and	T	with	probability	1	–	σleft.	As	an

equation:	EUup	=	(σleft)(R)	+	(1	–	σleft)(T)	And	if	player	1	selected	down	instead:	

This	time,	he	earns	S	with	probability	σleft	and	P	with	probability	1	–	σleft.	As
an	equation:	EUdown	=	(σleft)(S)	+	(1	–	σleft)(P)	Then	we	set	player	1’s	expected
utility	for	up	equal	to	his	expected	utility	for	down	and	solve	for	σleft:	EUup	=
EUdown	EUup	=	(σleft)(R)	+	(1	–	σleft)(T)	EUdown	=	(σleft)(S)	+	(1	–	σleft)(P)	(σleft)(R)	+
(1	–	σleft)(T)	=	(σleft)(S)	+	(1	–	σleft)(P)	Rσleft	+	T	–	Tσleft	=	Sσleft	+	P	–	Pσleft	Rσleft	+
Pσleft	–	Tσleft	–	Sσleft	=	P	–	T
σleft(R	+	P	–	T	–	S)	=	P	–	T
	

Before	we	divide	by	R	+	P	–	T	–	S,	we	must	check	whether	R	+	P	–	T	–	S	is
equal	to	zero.	Unfortunately,	we	fall	into	the	same	indeterminacy	that	we	saw	in
the	prisoner’s	dilemma.	P	–	T	is	negative,	but	R	–	S	is	positive.	Summing	those
together	sometimes	creates	a	positive	number,	sometimes	creates	a	negative
number,	and	sometimes	results	in	0.	We	therefore	need	to	separate	these
possibilities	into	three	cases.
	
R	+	P	–	T	–	S	=	0

Here,	we	cannot	divide	to	solve	for	σleft.	However,	we	can	substitute	R	+	P	–
T	–	S	=	0	into	the	equation:	σleft(R	+	P	–	T	–	S)	=	P	–	T
R	+	P	–	T	–	S	=	0
σleft(0)	=	P	–	T
0	=	P	–	T
T	=	P

	
But	T	>	P,	so	we	have	derived	a	contradiction.	Thus,	if	R	+	P	–	T	–	S	=	0,	no

mixture	satisfies	the	mixed	strategy	algorithm,	and	we	can	switch	to	the	next
case:	R	+	P	–	T	–	S	>	0

This	time,	we	can	divide	by	R	+	P	–	T	–	S:	σleft(R	+	P	–	T	–	S)	=	P	–	T
σleft=	(P	–	T)/(R	+	P	–	T	–	S)	Since	P	<	T,	we	know	P	–	T	is	negative.	To	be	a
valid	probability,	the	denominator	must	therefore	also	be	negative.	However,	we



assumed	it	was	positive	at	the	start	of	this	case,	so	we	have	found	a	contradiction
and	can	advance	to	the	final	case:	R	+	P	–	T	–	S	<	0

Now	when	we	divide	P	–	T	by	R	+	P	–	T	–	S,	the	result	is	positive.	The	last
thing	to	check	is	whether	the	magnitude	of	the	numerator	is	less	than	the
magnitude	of	the	denominator.	Since	both	the	numerator	and	denominator	are
negative	here,	this	means	P	–	T	must	be	greater	than	R	+	P	–	T	–	S:	P	–	T	>	R	+
P	–	T	–	S
0	>	R	–	S
S	>	R

	
However,	R	is	greater	than	S	by	definition,	so	the	probability	distribution

fails	once	again.
Combining	all	three	cases	together,	no	mixed	strategy	satisfies	the

indifference	condition.	Therefore,	a	general	form	of	deadlock	has	no	mixed
strategy	Nash	equilibrium.

	



Takeaway	Points
1)	MSNE	are	sensitive	to	slight	changes	in	payoffs.	Using	generalized	games
with	exogenous	variables	allows	us	to	solve	all	versions	of	a	game	with	one
calculation.
2)	We	must	be	careful	to	show	that	probabilities	the	mixed	strategy	algorithm
produces	are	valid.



Lesson	3.3:	Knife-Edge	Equilibria
When	we	use	game	theory	to	model	real	world	phenomenon,	we	want	to	use

payoffs	that	actually	represent	the	real	world	preferences	of	the	players.	After
all,	payoffs	affect	a	game’s	equilibria.	If	we	use	bizarre	payoffs,	we	will	find
bizarre	equilibria.	In	turn,	our	game	will	falsely	predict	the	behavior	of	the	actors
in	the	model.

Using	exogenous	variables	in	payoffs	sometimes	leads	to	cases	where	an
equilibrium	exists	for	only	a	single	configuration	of	the	payoffs;	increasing	or
decreasing	a	single	payoff	by	a	tiny	amount	makes	that	equilibrium	completely
disappear.	We	refer	to	such	an	equilibrium	as	a	knife-edge	equilibrium,	as	they
precariously	rest	on	the	skinny	edge	of	a	single	number.	We	generally	believe
these	equilibria	are	unlikely	to	occur	in	the	real	world	since	they	are	only
possible	if	the	numbers	magically	align	themselves	in	a	perfect	way.	Thus,	we
generally	ignore	knife-edge	equilibria.

This	lesson	shows	how	to	spot	knife-edge	equilibria	and	further	explains
why	we	intentionally	toss	them	aside.
	



3.3.1:	The	Hawk-Dove	Game
Two	animals	are	in	conflict	over	some	good	worth	v	>	0.	Simultaneously,

they	choose	whether	to	behave	like	hawks	or	doves.	Hawks	are	willing	to	fight
over	the	good.	Doves	are	not.	So	if	one	animal	chooses	hawk	and	the	other
selects	dove,	the	hawk	takes	the	entire	good	and	the	dove	receives	nothing.	If
both	act	like	hawks,	they	fight	a	battle	over	the	good.	Each	wins	the	good	with
probability	1/2	but	both	pay	a	cost	of	conflict	c	>	0.	Finally,	if	both	play	dove,
they	split	the	good	evenly.

Let’s	look	at	the	matrix:	
In	the	past	couple	of	lessons,	the	games	have	had	stable	equilibria	even	as

the	exogenous	variables	changed.	For	example,	in	the	prisoner’s	dilemma,
regardless	of	the	particular	values	for	T,	R,	P,	and	S,	both	players	always	played
their	strictly	dominant	strategies	in	the	Nash	equilibrium.	Likewise,	in	the
generalized	battle	of	the	sexes	game,	two	PSNE	and	one	MSNE	always	existed
regardless	of	the	values	of	A,	B,	and	C.	Although	the	exact	mixtures	of	the
MSNE	changed	as	a	function	of	A,	B,	and	C,	the	players	could	always	mix	in
equilibrium.

The	hawk-dove	game	is	not	as	straightforward.	When	the	value	of	v	is	high,
the	players	have	a	strictly	dominant	strategy	and	always	select	that	one.	But
when	the	value	of	v	is	low,	the	game	has	two	PSNE	and	one	MSNE.

Let’s	see	why	changing	the	value	of	v	leads	to	different	equilibria.	First,

consider	player	1’s	best	response	to	dove:	
Since	v	is	greater	than	0,	v	is	always	greater	than	half	of	v.	As	such,	player

1’s	best	response	to	dove	is	hawk	regardless	of	the	specific	value	of	v.
The	same	is	true	for	player	2’s	best	response	to	dove:	

Again,	v	is	always	greater	than	half	of	v,	so	hawk	is	player	2’s	best	response.
However,	each	player’s	best	response	to	hawk	depends	on	the	value	of	v.



Observe	player	1’s	decision:	
When	v/2	is	greater	than	c,	hawk	is	player	1’s	best	response.	But	when	v/2	is

less	than	c,	dove	is	his	best	response.	Life	gets	complicated	when	v/2	exactly
equals	c,	as	both	hawk	and	dove	are	best	responses	to	hawk	in	that	instance.

The	same,	of	course,	applies	to	player	2’s	best	responses	to	player	1	playing

hawk:	
Given	such	a	dynamic,	the	best	course	of	action	is	to	split	the	game	into

three	cases:	v/2	>	c,	v/2	<	c,	and	v/2	=	c.
Let’s	start	with	v/2	>	c.	Here,	hawk	is	each	player’s	best	response	to	the

other	playing	hawk.	But	hawk	is	also	each	player’s	best	response	to	dove.
Therefore,	hawk	strictly	dominates	dove	for	v/2	>	c.	We	know	both	players	must
pick	hawk	in	equilibrium.	In	essence,	the	game	turns	into	a	prisoner’s	dilemma,
in	which	“hawk”	is	“confess”	and	“dove”	is	“keep	quiet.”	In	equilibrium,	both
players	earn	v/2	–	c.	However,	if	they	could	credibly	commit	to	playing	dove,
both	players	improve	their	payoffs	to	v/2.	Unfortunately,	for	the	same	reason	as
in	the	prisoner’s	dilemma,	the	<dove,	dove>	outcome	is	inherently	unstable;
both	players	have	incentive	to	deviate	to	hawk.

Now	consider	v/2	<	c.	Dove	is	now	each	player’s	best	response	to	hawk.
Consequently,	with	best	responses	marked,	the	game	looks	like	this:	

Thus,	two	pure	strategy	Nash	equilibria	exist:	<hawk,	dove>	and	<dove,
hawk>.	But	since	no	player	has	a	single	strictly	dominant	strategy,	we	must	run
the	mixed	strategy	algorithm.	On	the	bright	side,	the	symmetry	of	the	game
means	that	we	only	need	to	solve	for	one	player’s	mixed	strategy;	the	other
player’s	will	be	the	same.

Let’s	begin	by	finding	player	1’s	expected	utility	for	hawk:	

Player	1	earns	v/2	–	c	with	probability	σhawk	and	v	with	probability	1	–	σhawk.
As	an	equation:	EUhawk	=	(σhawk)(v/2	–	c)	+	(1	–	σhawk)(v)	Now	consider	player	1’s



possible	payoffs	if	he	selects	dove:	
This	time,	he	earns	0	with	probability	σhawk	and	v/2	with	probability	1	–	σhawk.

As	an	equation:	EUdove	=	(σhawk)(0)	+	(1	–	σhawk)(v/2)	To	solve	for	player	2’s
equilibrium	mixed	strategy,	we	set	those	two	expected	utilities	equal	to	one
another	and	solve	for	σhawk:	EUhawk	=	EUdove	EUhawk	=	(σhawk)(v/2	–	c)	+	(1	–	σhawk)
(v)	EUdove	=	(σhawk)(0)	+	(1	–	σhawk)(v/2)	(σhawk)(v/2	–	c)	+	(1	–	σhawk)(v)	=	(σhawk)
(0)	+	(1	–	σhawk)(v/2)	(σhawk)(v/2	–	c)	+	(1	–	σhawk)(v)	=	(1	–	σhawk)(v/2)	vσhawk/2	–
cσhawk	+	v	–	vσhawk	=	v/2	–	vσhawk/2
-vσhawk/2	–	cσhawk	+	v	=	v/2	–	vσhawk/2
-cσhawk	+	v	=	v/2
cσhawk	=	v/2
σhawk	=	v/2c	Let’s	verify	that	v/2c	is	a	valid	probability	distribution.	The	c	and	v
are	both	positive,	which	implies	2c	is	positive.	Thus,	the	numerator	and
denominator	are	both	positive.	That	fulfills	the	first	requirement.	Second,	we
must	confirm	that	the	numerator	is	less	than	the	denominator,	or	v	<	2c.	Recall
that	for	this	particular	case,	we	have	already	assumed	that	v/2	<	c.	If	we	multiply
both	sides	by	2,	we	immediately	arrive	at	our	required	condition:	v	<	2c.	As
such,	we	have	a	valid	probability	distribution.

Thus,	if	a	player	chooses	hawk	with	probability	v/2c,	the	other	player	is
indifferent	between	both	of	his	or	her	strategies.	In	turn,	in	the	case	where	v	<
2c,	a	MSNE	exists	in	which	both	players	select	hawk	with	probability	v/2c	and
choose	dove	with	complementary	probability.

Finally,	we	must	investigate	the	case	where	v/2	=	c.	Recall	that	each	player’s
payoff	for	the	<hawk,	hawk>	outcome	was	v/2	–	c.	Thus,	when	we	substitute	v/2
=	c,	that	payoff	reduces	to	0.

Making	that	change,	here	is	the	matrix	for	v/2	=	c:	

As	we	saw	earlier,	each	player	now	is	indifferent	between	hawk	and	dove	if
the	other	player	selects	hawk	as	a	pure	strategy.	Consequently,	this	version	of
the	hawk-dove	game	has	three	PSNE:	<hawk,	hawk>,	<hawk,	dove>,	and
<dove,	hawk>.	We	can	observe	this	with	the	best	responses	marked:	



Unfortunately,	the	indifference	between	hawk	and	dove	when	the	other
player	selects	hawk	leads	to	infinitely	many	equilibria	in	partially	mixed
strategies.	To	see	this,	suppose	player	1	mixes.	That	is,	he	plays	hawk	with
probability	σhawk	and	dove	with	probability	1	–	σhawk,	where	0	<	σhawk	<	1.	(This
restriction	on	σhawk	requires	player	1	to	actually	mix	and	not	play	hawk	or	dove
as	a	pure	strategy.)	If	player	2	plays	hawk	as	a	pure	strategy,	player	1’s	mixture
is	a	best	response,	since	he	earns	0	regardless	of	his	choice.

As	such,	we	only	need	to	see	if	player	2’s	hawk	strategy	is	a	best	response	to
player	1’s	mixture.	Let’s	begin	by	calculating	her	expected	utility	for	hawk:	

Player	2	earns	0	with	probability	σhawk	and	v	with	probability	1	–	σhawk.	As	an
equation:	EUhawk	=	(σhawk)(0)	+	(1	–	σhawk)(v)	Now	consider	player	2’s	payoffs	if

she	chooses	dove:	
This	time,	she	earns	0	with	probability	σhawk	and	v/2	with	probability	σhawk.

As	an	equation:	EUdove	=	(σhawk)(0)	+	(1	–	σhawk)(v/2)	As	such,	player	2	is	willing
to	play	hawk	if	her	expected	utility	for	hawk	is	at	least	as	great	as	her	expected
utility	for	dove.	Some	algebra	shows	this	is	true:	EUhawk	≥	EUdove	EUhawk	=	(σhawk)
(0)	+	(1	–	σhawk)(v)	EUdove	=	(σhawk)(0)	+	(1	–	σhawk)(v/2)	(σhawk)(0)	+	(1	–	σhawk)(v)
≥	(σhawk)(0)	+	(1	–	σhawk)(v/2)	(1	–	σhawk)(v)	≥	(1	–	σhawk)(v/2)	v	–	vσhawk	≥	v/2	–
vσhawk/2
v/2	≥	vσhawk/2
σhawk	≤	1

	
In	fact,	σhawk	must	be	less	than	1,	so	this	inequality	strictly	holds.	Player	2’s

hawk	strategy	is	the	unique	best	response	to	any	mixture	of	player	1’s.	In	turn,
we	have	infinitely	many	equilibria	in	which	player	1	mixes	between	hawk	and
dove	and	player	2	selects	hawk	as	a	pure	strategy.	But	since	this	game	is



symmetric,	player	2	can	also	mix	between	hawk	and	dove	in	any	fashion	while
player	1	chooses	hawk	as	a	pure	strategy	in	equilibrium.

However,	the	partially	mixed	strategy	Nash	equilibria	rely	on	the	knife-edge
condition	of	v/2	=	c.	If	v/2	is	even	slightly	greater	than	or	slightly	less	than	c,
these	equilibria	completely	disappear.

	



3.3.2:	Why	Are	Knife-Edge	Equilibria	Unrealistic?
Most	of	the	time,	game	theorists	model	situations	that	are	naturally	occurring

and	do	not	have	laboratory	controls.	In	the	hawk-dove	game,	we	thought	of	two
animals	fighting	for	control	over	a	good.	What	are	the	odds	that	their	cost	of
fighting	was	exactly	v/2?	It	would	be	a	minor	miracle	if	the	stars	aligned	in	such
a	way	to	produce	that	result.

Going	a	step	further,	if	we	are	explicit	with	our	assumptions,	the	probability
such	a	case	exists	equals	exactly	zero.	That	is,	such	a	case	cannot	occur
naturally.

Our	theoretical	justification	comes	from	probability	theory.	Think	of	the
universe	of	situations	that	the	hawk-dove	game	represents.	We	can	think	of	each
individual	situation’s	cost	parameter	c	as	coming	from	a	continuous	probability
distribution,	where	c	must	be	greater	than	0	at	minimum	and	has	some	upper	cap
C.	Then	the	probability	of	observing	a	cost	parameter	c	between	any	two	values
a	and	b	(where	a	<	b)	is	the	integral	of	the	probability	density	function	between	a
and	b.

Mathematically,	let	f(x)	be	that	probability	density	function.	Then	the
probability	c	falls	between	a	and	b	is	as	follows:

The	probability	density	function	tells	us	that	the	probability	c	equals	exactly
v/2	is	the	integral	of	f(x)	from	v/2	to	v/2:

However,	the	rules	of	integration	tell	us	that	the	integral	from	a	single	value
to	that	same	value	equals	zero.	Essentially,	we	are	looking	for	the	area	under	the
probability	density	function	curve	at	a	single	point.	But	that	area	has	no	width
and	hence	has	no	area.	Thus,	the	probability	of	observing	a	c	exactly	equal	to	v/2
is	zero.

Moving	one	step	further,	if	the	probability	of	something	occurring	is	zero,
then	it	never	happens.	If	something	never	happens,	there	is	no	reason	to	study	it.
As	such,	when	we	encounter	knife-edge	conditions	such	as	v/2	=	c	in	the	hawk-
dove	game,	we	tend	to	ignore	them.	After	all,	we	cannot	rest	our	theories	on
such	a	non-existent	case,	so	analyzing	these	knife-edge	conditions	is	a	waste	of
effort	and	paper.

Although	the	next	section	will	address	a	reason	why	we	might	care	about
knife-edge	conditions,	let	it	be	known	that	this	norm	against	researching	knife-
edge	equilibria	is	a	good	thing.	Knife-edge	conditions	induce	indifference,	which
often	leads	to	instances	of	weak	dominance.	Observe	that	hawk	weakly



dominates	dove	if	v/2	equals	c:

If	player	2	chooses	hawk,	hawk	and	dove	give	the	same	payoff	to	player	1.
However,	if	player	2	selects	dove,	hawk	beats	dove	for	player	1.	Thus,	hawk
always	provides	at	least	as	great	of	a	payoff	as	dove	for	player	1	and
occasionally	provides	more.	By	definition,	hawk	weakly	dominates	dove	here.
The	same	is	true	for	player	2.

As	chapter	1	explained	at	length,	weak	dominance	is	the	bane	of	our
existence.	We	want	to	avoid	solving	these	games	whenever	possible.	Knife-edge
conditions	provide	a	theoretically	justifiable	reason	to	ignore	such	situations.
	



3.3.3:	When	Knife-Edge	Conditions	Are	Important
We	can	safely	skip	knife-edge	conditions	of	games	that	occur	naturally.

However,	game	masters	sometimes	fabricate	the	rules.	For	example,	recall	back
to	the	take-or-share	game	from	Lesson	1.8.	Many	game	shows	require	their
contestants	to	simultaneously	decide	to	share	a	good	or	attempt	to	steal	all	of	it
for	themselves.	If	we	let	the	value	of	the	good	be	v	and	we	assume	the	players
only	want	to	maximize	their	share	of	the	good,	the	generalized	form	of	the	game
looks	as	follows:

This	is	identical	to	the	hawk-dove	game	when	v/2	=	c,	except	the	word
“take”	appears	in	place	of	“hawk”	and	“dove”	has	become	“share.”
Unfortunately,	we	cannot	invoke	the	knife-edge	exception	here.	A	person	(the
game	show	creator)	fabricated	an	environment	that	constrained	v/2	to	be	equal	to
c.	However,	absent	a	scenario	where	someone	is	actually	in	control	of	the	game
in	this	manner,	we	can	ignore	knife-edge	equilibria.

One	more	caveat	to	stress:	we	can	only	make	claims	about	knife-edge
conditions	when	referring	to	exogenous	variables.	We	have	seen	and	will	see
many	games	where	an	equilibrium	rests	on	a	knife-edge	strategy	endogenously
selected	by	the	players.	For	example,	recall	the	matching	pennies	game	from
Lesson	1.5.	In	that	game’s	unique	Nash	equilibrium,	the	players	must	play	heads
exactly	half	the	time	and	tails	exactly	half	the	time.	Any	extra	weight	breaks	the
indifference	condition,	and	we	lose	the	equilibrium.

Even	so,	this	is	theoretically	justifiable.	The	players	actively	choose	these
strategies	in	response	to	the	constraints	of	their	environment.	In	contrast,	we
have	no	theoretical	justification	for	exogenous	variables	creating	a	knife-edge
condition.	Humans	can	make	strategic	decisions;	nature	cannot.

	



Takeaway	Points
1)	A	knife-edge	equilibrium	is	an	equilibrium	that	occurs	for	an	exact	set	of
payoffs.	Slightly	increasing	or	decreasing	a	single	payoff	completely
eliminates	the	equilibrium.
2)	Knife-edge	conditions	do	not	occur	naturally,	so	we	usually	skip	solving
them.
3)	If	we	were	to	solve	them,	they	usually	take	a	while—knife-edge	conditions
lead	to	weakly	dominated	strategies.



Lesson	3.4:	Comparative	Statics
At	its	core,	game	theory	is	the	study	of	altering	the	strategic	dimensions	of

an	environment.	We	want	to	know	how	subtle	changes	to	a	game	affect	how
players	behave.	For	example,	during	soccer	penalty	kick,	the	striker	can	aim	to
the	left	side	of	the	goal	or	the	right	side	of	the	goal.	Suppose	he	is	extremely
accurate	on	the	right	side	but	has	problems	with	his	left	side.	Aware	of	his
weakness,	the	striker	has	spent	the	past	two	months	practicing	on	the	left	side.
How	should	this	affect	his	strategy?

Although	such	scenarios	seem	straightforward	at	the	outset,	game	theory	has
a	notorious	history	of	finding	optimal	but	counterintuitive	strategies.	(As	we	will
see	shortly,	this	penalty	kicks	example	is	one	of	them.)	We	began	introducing
the	possibility	of	a	fluid	environment	in	this	chapter	by	adding	exogenous
variables	to	payoff	matrices.	In	this	lesson,	we	begin	analyzing	the	actual
change.

The	study	of	such	changes	is	called	comparative	statics.	In	essence,	we	take
one	environment,	make	a	slight	tweak	to	it,	and	compare	the	outcomes	of	those
two	games.	Using	this	method,	we	can	discover	how	manipulating	games	affects
a	player’s	outcome	or	the	welfare	of	a	society.

Fortunately,	calculating	comparative	statics	is	an	easy	(if	time	consuming)
process.	Unfortunately,	we	now	enter	a	new	level	of	computationally	intensive
game	theory,	as	we	must	take	derivatives	to	calculate	these	comparative	statics.

Our	method	of	calculating	comparative	statics	is	as	follows:
	

1)	Solve	for	the	game’s	equilibria.
2)	Calculate	the	element	of	interest.	(This	could	be	the	probability	a	player
selects	a	particular	strategy,	the	probability	the	players	reach	a	certain
outcome,	or	a	player’s	expected	utility.)
3)	Take	the	derivative	of	that	element	of	interest	with	respect	to	the
exogenous	variable	we	want	to	manipulate.
4)	Use	that	derivative	to	see	how	changing	the	exogenous	variable	affects	the
element	of	interest.
	
The	process	may	seem	difficult	to	comprehend	without	some	examples.

Luckily,	this	lesson	is	full	of	them.	Calculating	comparative	statics	will	seem
easy	by	the	end	of	this	lesson.

	



3.4.1:	Penalty	Kicks
Consider	the	strategic	interaction	of	soccer	penalty	kicks.	The	kicker	can

choose	whether	to	aim	left	or	right.	Since	the	shot	moves	so	quickly,	the	goalie
effectively	chooses	simultaneously	whether	to	dive	left	or	right	to	stop	the	ball.
The	goalie	wants	to	guess	correctly;	the	kicker	wants	to	make	the	goalie	guess
incorrectly.

Let’s	begin	our	analysis	with	a	superhuman	kicker	and	a	superhuman	goalie.
The	kicker	has	perfect	accuracy;	if	the	goalie	guesses	incorrectly,	the	kicker
always	buries	the	ball	into	the	net.	However,	if	the	goalie	guesses	correctly,	he
always	stops	the	shot.	Then	we	can	use	the	following	matrix	to	analyze	the

game:	
Although	the	payoffs	are	different,	the	general	structure	of	this	game	is

identical	to	the	matching	pennies	framework	presented	in	Lesson	1.5.	The	kicker
wants	to	mismatch	directions;	the	goalie	wants	to	match	directions.	Thus,	no
PSNE	exists.

And	just	like	matching	pennies,	the	MSNE	calls	for	both	players	to	flip	a
coin.	This	clearly	induces	indifference	on	both	sides.	If	the	goalie	dives	left	and
dives	right	with	equal	frequency,	then	the	kicker	scores	at	the	same	rate
regardless	of	which	direction	he	aims.	Likewise,	if	the	kicker	aims	left	half	of
the	time	and	aims	right	half	of	the	time,	then	the	probability	the	goalie	stops	the
shot	is	the	same	regardless	if	she	dives	left	or	right.	Thus,	neither	player	has	a
profitable	deviation,	which	therefore	makes	this	a	Nash	equilibrium.

But	what	if	the	kicker	had	a	weak	side?	Perhaps	if	the	kicker	aims	left,	he
will	miss	some	percentage	of	the	time.	Thus,	even	if	the	goalie	guesses
incorrectly,	the	kicker	might	not	score.	Let	the	kicker’s	accuracy	on	his	weak	left
side	be	x,	where	0	<	x	<	1.	Then	we	can	use	the	following	matrix	to	represent	the

interaction:	
Before	we	solve	this	game,	make	a	prediction.	As	the	kicker’s	accuracy	on

his	left	side	increases,	will	he	kick	to	that	side	more	frequently?	This	question	is
obviously	important	to	a	soccer	player,	but	only	comparative	statics	can	prove
the	correct	answer.

Let’s	begin	the	comparative	statics	process.	Recall	that	the	first	step	to



deriving	comparative	statics	is	to	find	a	game’s	equilibria.	We	ought	to	begin

here	by	marking	best	responses:	
Despite	the	additions	of	x	and	–x	to	the	game,	the	best	responses	have	the

same	pattern	as	in	matching	pennies.	The	goalie	still	wants	to	match	the	kicker’s
behavior,	while	the	kicker	still	wants	to	play	the	opposite	of	the	goalie’s
strategy.	Therefore,	the	game	lacks	a	PSNE.	In	turn,	we	must	look	for	its	MSNE.

Let’s	start	by	finding	the	kicker’s	expected	utility	for	aiming	left:	

If	the	goalie	dives	left,	he	earns	0.	If	she	dives	right,	he	earns	x.	As	an
equation:	EUKL	=	(σDL)(0)	+	(1	–	σDL)(x)	Now	we	move	to	the	kicker’s	expected

utility	for	kicking	right:	
This	time,	he	earns	1	if	the	goalie	dives	left	and	0	if	she	dives	right.	As	an

equation:	EUKR	=	(σDL)(1)	+	(1	–	σDL)(0)	The	last	step	is	to	set	these	two
expected	utilities	equal	to	each	other	and	solve	for	σDL.

	
EUKL	=	EUKR

EUKL	=	(σDL)(0)	+	(1	–	σDL)(x)	EUKR	=	(σDL)(1)	+	(1	–	σDL)(0)	(σDL)(0)	+	(1	–	σDL)
(x)	=	(σDL)(1)	+	(1	–	σDL)(0)	(1	–	σDL)(x)	=	(σDL)(1)	x	–	xσDL	=	σDL
σDL	+	xσDL	=	x	σDL(1	+	x)	=	x	σDL=	x/(1	+	x)	Because	x	is	a	positive	number,	1	+
x	is	also	a	positive	number.	1	+	x	is	also	greater	than	x,	so	this	is	a	valid
probability	distribution.

Knowing	this,	we	can	safely	move	to	the	goalie’s	mixed	strategy.	Let’s	start

with	her	expected	utility	for	diving	left:	
The	goalie	makes	the	save	and	earns	0	with	probability	σKL.	With	probability

1	–	σKL,	she	guesses	incorrectly	and	earns	-1.	As	an	equation:	EUDL	=	(σKL)(0)	+



(1	–	σKL)(-1)	Let’s	switch	to	diving	right:	
This	time,	the	goalie	earns	-x	with	probability	σKL	and	0	with	probability	(1	–

σKL).	As	an	equation:	EUDR	=	(σKL)(-x)	+	(1	–	σKL)(0)	Just	like	before,	we	set
these	expected	utilities	equal	to	each	other	and	solve	for	σKL:	EUDL	=	EUDR

EUDL	=	(σKL)(0)	+	(1	–	σKL)(-1)	EUDR	=	(σKL)(-x)	+	(1	–	σKL)(0)	(σKL)(0)	+	(1	–
σKL)(-1)	=	(σKL)(-x)	+	(1	–	σKL)(0)	(1	–	σKL)(-1)	=	(σKL)(-x)	-1	+	σKL	=	-xσKL
σKL	+	xσKL	=	1
σKL(1	+	x)	=	1
σKL	=	1/(1	+	x)	This	is	a	valid	probability	distribution:	1	and	1	+	x	are	both
positive	and	1	+	x	is	greater	than	1.

Thus,	we	found	the	MSNE:	the	goalie	dives	left	with	probability	x/(1	+	x)
while	the	kicker	aims	left	with	probability	1/(1	+	x).

Recall	the	step-by-step	process	to	calculate	comparative	statics.	The	first
step	is	to	calculate	the	equilibrium.	We	can	check	that	part	off.	The	second	step
is	to	calculate	the	element	of	interest.	We	want	to	know	how	the	kicker’s
strategy	changes	as	his	aim	toward	the	left	side	improves.	To	do	that,	we	must
know	the	probability	he	kicks	left.	Fortunately,	the	mixed	strategy	Nash
equilibrium	explicitly	tells	us	that	this	probability	is	1/(1	+	x),	so	the	first	step
took	care	of	the	second	step	as	well.

The	third	step	is	to	take	the	derivative.	Since	x	represents	the	kicker’s
accuracy,	we	take	the	derivative	of	1/(1	+	x)	with	respect	to	x.	This	requires	the
quotient	rule:	f(x)	=	1/(1	+	x)	f’(x)	=	[(1)’(1	+	x)	–	(1)(1	+	x)’]/(1	+	x)2
f’(x)	=	[(0)(1	+	x)	–	(1)(1)]/(1	+	x)2
f’(x)	=	-1/(1	+	x)2
	

Recall	that	x	is	bounded	between	0	and	1.	Thus,	-1/(1	+	x)2	is	always
negative	on	that	interval.	Therefore,	the	probability	the	kicker	aims	left
decreases	as	his	accuracy	to	that	side	improves!

Most	people	guess	the	opposite.	After	all,	why	would	improving	your
abilities	on	one	side	make	you	want	to	utilize	that	side	less	frequently?

The	critical	insight	is	that	the	kicker	must	factor	in	the	goalie’s	strategic
interaction.	In	a	world	where	the	goalie	knows	nothing	about	the	kicker’s
weakness,	the	kicker	should	aim	toward	the	stronger	side.	However,	in	this
version	of	the	game,	the	goalie	is	fully	aware	of	the	kicker’s	weakness,	and	she



exploits	that	weakness	by	guarding	the	kicker’s	strong	side	more	frequently.	In
turn,	the	kicker	sees	value	in	aiming	toward	his	weak	side:	although	he	will	often
miss,	the	goalie	will	not	be	there	to	stop	a	well-placed	shot	as	frequently.	But
when	the	kicker’s	accuracy	on	his	left	improves,	the	goalie	can	no	longer	camp
out	on	the	right.	That	makes	the	kicker	willing	to	aim	to	the	right	more	often,
which	is	what	the	comparative	static	tells	us	will	happen.

At	least	in	this	context,	the	kicker	is	only	as	good	as	his	weakest	link.
	



3.4.2:	The	Volunteer’s	Dilemma
This	section	explores	the	basic	version	of	the	model	I	discuss	in	Game

Theory	101:	The	Murder	of	Kitty	Genovese,	the	story	of	a	woman	who	stabbed
outside	of	her	apartment	but	received	surprisingly	little	help	from	onlookers.

The	story	goes	as	follows.	Two	neighbors	share	an	apartment	building.	Late
one	night,	a	deranged	man	stabs	a	woman	in	the	alleyway	below	the	apartment.
She	shrieks,	waking	both	of	the	neighbors.	The	neighbors	look	out	their
windows	and	see	the	woman	bleeding	on	the	ground.	Simultaneously	and
without	communicating	with	one	another,	the	neighbors	individually	must
decide	whether	to	call	the	police.	If	no	one	calls,	the	woman	will	die.	If	a	single
neighbor	picks	up	the	phone,	an	ambulance	will	arrive	in	time	to	save	her	life.

Let’s	suppose	the	neighbors	are	nice	people:	they	value	the	woman’s	life
worth	1	and	her	death	worth	0.	However,	calling	is	costly	to	them,	since	they
will	be	up	all	night	talking	to	the	police	officers	and	risk	retribution	from	the
murderer.	To	reflect	this,	anyone	who	calls	pays	a	cost	c,	where	0	<	c	<	1.	We
can	imagine	c	to	be	very	small,	as	the	neighbors	would	be	very	sad	if	they	let	the
woman	die.	However,	they	both	prefer	the	other	one	make	the	phone	call.	Hence
this	is	a	volunteer’s	dilemma:	each	neighbor	only	wants	to	volunteer	to	call	if	he
or	she	knows	the	other	one	will	not.	As	such,	without	communication,	it	is
unclear	who	should	pick	up	the	phone.

Here	is	the	payoff	matrix:	
Two	PSNE	exist:	<call,	ignore>	and	<ignore,	call>.	To	see	this,	suppose	the

player	calling	in	equilibrium	switched	to	ignoring.	Now	no	one	calls,	the	woman
dies,	and	both	players	earn	0.	This	is	not	a	profitable	deviation,	as	the	caller
previously	earned	1	–	c	from	calling,	which	is	a	positive	amount.	Likewise,	the
player	ignoring	in	equilibrium	would	not	want	to	change	strategies.	Help	will
already	arrive	thanks	to	the	other	player.	If	the	ignorer	switches	to	calling,	he
unnecessarily	pays	the	cost.

Marking	the	best	responses	further	illustrates	these	points:	

Thus	far,	we	have	found	two	equilibria.	However,	Lesson	1.8	taught	us	that
virtually	all	games	have	an	odd	number	of	equilibria,	so	we	should	look	for	a
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mixed	strategy	Nash	equilibrium	here	as	well.	Let’s	start	by	finding	player	1’s

expected	utility	for	ignoring:	
Let	σignore	be	the	probability	player	2	ignores.	Then	player	1	earns	0	with

probability	σignore	and	1	with	probability	1	–	σignore.	As	an	equation:	EUignore	=
(σignore)(0)	+	(1	–	σignore)(1)	Now	consider	the	possibilities	if	player	1	calls:	

Interestingly,	player	2’s	strategy	is	irrelevant	here.	If	player	1	calls,	he	pays	a
cost	and	help	arrives	with	certainty.	Thus,	he	guarantees	himself	a	payoff	of	1	–
c:	EUcall	=	1	–	c	For	our	final	step,	we	set	these	expected	utilities	equal	to	each
other	and	solve	for	σignore:	EUignore	=	EUcall	EUignore	=	(σignore)(0)	+	(1	–	σignore)(1)
EUcall	=	1	–	c	(σignore)(0)	+	(1	–	σignore)(1)	=	1	–	c	1	–	σignore	=	1	–	c	σignore	=	c
Therefore,	in	the	MSNE,	player	1	ignores	with	probability	c.	But	note	that	the
game	is	symmetric.	As	such,	player	2	adopts	the	exact	same	strategy.	So	both
players	ignore	with	probability	c	and	call	with	probability	1	–	c.

This	equilibrium	gravely	concerns	the	bleeding	woman.	If	both	players
ignore	with	probability	c,	then	no	one	calls	with	probability	c2.	Thus,	c2	of	the
time,	the	woman	dies	in	the	alley	even	though	both	players	would	prefer	to	call
if	they	knew	this	would	be	the	eventual	outcome.

Would	the	dying	woman	prefer	selfish	or	benevolent	witnesses?	We	can	find
out	using	comparative	statics.	Consider	the	cost	parameter	c	to	be	a	measure	of
selfishness.	The	higher	its	value,	the	more	the	witnesses	value	their	own	time
compared	to	the	woman’s	survival.

Since	we	already	know	that	the	probability	no	one	calls	and	the	woman	dies
equals	c2,	we	only	need	to	take	the	derivative	and	analyze	it.	Fortunately,	the
power	rule	is	easy	to	implement	here:	f(c)	=	c2
f’(c)	=	2c	The	derivative	is	2c.	Recall	that	c	always	takes	on	a	positive	value.
Thus,	the	derivative	is	always	increasing	on	the	valid	values.	In	turn,	we	can
infer	that	the	woman	dies	more	frequently	as	c	increases.	We	have	reached	a
logical	conclusion:	the	woman	prefers	selfless	witnesses	to	selfish	ones.

	



3.4.3:	Comparative	Statics	of	the	Hawk-Dove	Game
Recall	that	the	hawk-dove	game	looked	like	this:	

For	v/2	>	c,	both	players	choose	hawk	in	the	unique	equilibrium.	When	v/2	<
c,	three	equilibria	exist:	<hawk,	dove>	and	<dove,	hawk>	in	pure	strategies	and
a	MSNE	in	which	both	select	hawk	with	probability	v/2c.	Consider	the
following	question:	Suppose	the	hawk-dove	game	is	a	model	of	crisis	bargaining
between	two	states,	where	the	<hawk,	hawk>	outcome	represents	war.	What	can
we	say	about	the	probability	of	war	as	a	function	of	the	cost	of	conflict?

Calculating	comparative	statics	in	the	penalty	kicks	game	and	the
volunteer’s	dilemma	was	relatively	easy,	as	the	equilibria	only	gradually
changed	as	a	function	of	the	exogenous	parameter.	The	hawk-dove	game,
however,	has	a	drastic	change	in	equilibria	as	c	increases.	When	c	is	low,	the
states	always	choose	hawk	and	thus	end	up	in	war	with	certainty.	But	once	c
crosses	the	v/2	threshold,	the	equilibria	completely	change;	either	one	plays
hawk	and	the	other	selects	dove,	or	they	mix.	If	they	choose	<hawk,	dove>	or
<dove,	hawk>,	they	avoid	war	entirely.

If	they	mix,	their	mixing	probabilities	depend	on	c,	so	we	must	calculate	the
appropriate	derivative.	Since	they	both	select	hawk	with	probability	v/2c,	the
probability	they	fight	a	war	equals	(v/2c)(v/2c).	To	see	how	the	mixed	strategy
Nash	equilibrium	evolves	as	a	function	of	c,	we	must	take	the	derivative	of	that
probability:	Pr(war)	=	(v/2c)(v/2c)	Pr(war)	=	v2/4c2
	

Rather	than	suffer	through	the	quotient	rule,	we	can	bring	the	c	into	the
denominator	by	recalling	that	1/xn	=	x-n.	Thus:	Pr(war)	=	v2/4c2
Pr(war)	=	v2c-2/4
Pr(war)’	=	(-2)(v2c-3)/4
Pr(war)’	=	-v2c-3/2
Pr(war)’	=	-v2/2c3
	

Since	both	v	and	c	are	greater	than	0,	v2/2c3	is	always	positive,	which	means
-v2/2c3	is	always	negative.	Therefore,	the	probability	of	war	is	decreasing	as	a
function	of	c.

To	answer	the	original	question,	war	is	weakly	decreasing	as	a	function	of	c.
Put	differently,	if	we	increase	the	cost	of	war,	the	expected	probability	of	war
will	either	remain	the	same	or	decrease.	Two	reasons	prevent	us	from	saying	it	is



decreasing	instead	of	weakly	decreasing.	First,	if	we	increase	c	but	maintain	c	<
v/2,	the	players	will	continue	playing	<hawk,	hawk>	despite	paying	a	larger
cost.	And	second,	if	we	increase	c	in	the	range	c	>	v/2,	the	probability	of	war
only	decreases	if	the	players	are	using	the	MSNE.	If	they	are	playing	one	of	the
PSNE,	the	probability	of	war	remains	0.

Regardless,	political	scientists	interested	in	interstate	wars	have	created	far
more	elaborate	models	of	crisis	bargaining	and	seen	the	same	catch-22	result.
Promoters	of	peace	may	want	to	limit	the	harm	war	inflicts	on	those	unlucky
enough	to	be	fighting.	However,	decreasing	the	costs	associated	with	conflict
actually	incentivizes	states	to	fight	more	frequently.	As	such,	the	destructive
power	of	nuclear	weapons	may	ironically	be	better	promoters	of	peace	than	even
the	most	seasoned	of	diplomats.

	



3.4.4:	Curveballs	with	a	Runner	on	Third	Base
This	section	covers	the	proof	of	the	model	in	my	article	“Breaking	Balls	with

a	Runner	on	Third	Base,”	which	appeared	in	the	spring	2012	edition	of	The
Baseball	Research	Journal.	You	can	download	a	complete	version	of	the	paper
here	for	free.

In	baseball,	the	dual	between	a	pitcher	and	batter	has	the	familiar	matching
pennies	framework.	The	pitcher	decides	which	type	of	pitch	he	wants	to	throw,
while	the	batter	anticipates	a	particular	pitch	type.	If	the	batter	guesses	correctly,
he	is	more	likely	to	hit	the	ball.	Thus,	the	batter	wants	a	match,	while	the	pitcher
wants	a	mismatch.

Rather	than	rehash	the	matching	pennies	game	for	another	time,	let’s	instead
consider	a	different	strategic	dynamic	by	putting	a	runner	on	third	base.	Suppose
the	pitcher	on	the	mound	only	knew	how	to	throw	fastballs	and	curveballs.	From
the	catcher’s	perspective,	receiving	a	fastball	is	easier	because	the	pitch	travels
in	a	straight	line.	Curveballs,	as	the	name	suggests,	bend	in	midair	and
sometimes	bounce	before	reaching	home	plate.	If	one	of	these	curveballs	trickles
past	the	catcher,	the	runner	on	third	can	come	home	without	the	hitter	lifting	the
bat	off	his	shoulder.	So	throwing	a	curveball	is	inherently	risky	in	this	situation.

Thus,	there	are	a	couple	of	interesting	questions	here.	As	the	pitcher’s
wildness	increases,	does	the	batter	anticipate	more	fastballs?	And	does	the
pitcher,	fearing	that	the	runner	on	third	will	score,	toss	fewer	curveballs?	Think
about	these	questions	for	a	moment	and	make	a	couple	of	predictions.

To	answer	these	questions,	let’s	formalize	a	game	from	that	setup.	Similar	to
the	penalty	kicks	game,	suppose	the	batter	earns	1	for	a	correct	guess	and	0	for
an	incorrect	guess;	the	pitcher	earns	-1	if	the	batter	guesses	correctly	and	0	if	he
guesses	incorrectly.	However,	any	time	the	pitcher	throws	a	curveball,	the	batter
gains	x	and	the	pitcher	loses	x,	where	x	>	0.	The	value	for	x	represents	the
probability	the	ball	slips	by	the	catcher	on	a	curveball	and	the	benefit	of	the	run
scoring	to	the	batter.

The	matrix	looks	like	this:	
Let’s	first	look	for	an	instance	of	strict	dominance.	Note	that	x	can	take	on

any	positive	value	and	always	harms	player	2’s	payoff.	Thus,	many	values	of	x
make	throwing	a	curveball	a	terrible	strategy	for	player	2.	We	can	see	this	if	we
isolate	her	payoffs,	starting	with	her	best	response	to	the	batter	guessing	a

http://wjspaniel.files.wordpress.com/2008/03/breakingballsfinal.pdf


fastball:	
If	x	is	greater	than	1,	the	pitcher’s	unique	best	response	here	is	to	throw	a

fastball.
Now	consider	her	best	response	to	the	batter	guessing	curveball:	

This	time,	regardless	of	the	value	of	x,	the	pitcher’s	expected	utility	for
throwing	a	curveball	is	negative.	Meanwhile,	her	expected	utility	for	throwing	a
fastball	is	0.	Thus,	the	precise	value	of	x	is	irrelevant	here:	throwing	a	fastball	is
always	the	best	response	to	the	batter	guessing	curveball.

Combining	these	best	responses	together,	we	know	that	throwing	a	fastball
strictly	dominates	throwing	a	curveball	for	x	>	1.	So	when	considering	the
universe	of	cases	when	x	>	1,	we	can	eliminate	throwing	curveball	and	focus	on

the	reduced	game:	
IESDS	then	instructs	the	batter	to	guess	fastball.	Therefore,	the	game	has	a

unique	equilibrium	when	x	>	1:	<guess	fastball,	throw	fastball>.
Let’s	return	to	the	pitcher’s	best	response	to	the	batter	guessing	a	fastball:	

What	about	the	cases	when	0	<	x	≤	1?	When	x	equals	exactly	1,	the	pitcher
is	indifferent	between	throwing	a	fastball	and	throwing	a	curveball.	Thus,	x	=	1
is	a	knife-edge	condition.	As	Lesson	3.4	prescribed,	we	will	ignore	such	a
circumstance.

That	leaves	us	with	0	<	x	<	1	as	the	only	case	we	have	left	to	check.	If	we	set
x	at	such	a	value,	the	game’s	best	responses	look	like	this:	

The	best	responses	show	that	the	game	has	no	pure	strategy	Nash	equilibria.
We	also	see	the	familiar	matching	pennies	pattern	of	best	responses,	so	we	must
turn	to	the	mixed	strategy	algorithm	to	find	the	game’s	mixed	strategy	Nash



equilibrium.
Let’s	start	with	the	pitcher’s	expected	utility	for	throwing	a	fastball:	

The	pitcher	earns	-1	with	probability	σGF	and	0	with	probability	1	–	σGF.	As
an	equation:	EUTF	=	(σGF)(-1)	+	(1	–	σGF)(0)	Now	for	the	pitcher’s	expected

utility	for	throwing	a	curveball:	
Here,	she	earns	-x	with	probability	σGF	and	-1	–	x	with	probability	1	–	σGF.

As	an	equation:	EUTC	=	(σGF)(-x)	+	(1	–	σGF)(-1	–	x)	As	always,	we	set	those
expected	utilities	equal	to	each	other	and	solve	for	the	mixed	strategy:	EUTF	=
EUTC

EUTF	=	(σGF)(-1)	+	(1	–	σGF)(0)	EUTC	=	(σGF)(-x)	+	(1	–	σGF)(-1	–	x)	(σGF)(-1)	+	(1
–	σGF)(0)	=	(σGF)(-x)	+	(1	–	σGF)(-1	–	x)	-σGF	=	-xσGF	–	1	–	x	+	σGF	+	xσGF
-σGF	=	-1	–	x	+	σGF
2σGF	=	1	+	x	σGF	=	(1	+	x)/2
	

Thus,	the	batter	guesses	fastball	with	probability	(1	+	x)/2	and	guesses
curveball	with	probability	(1	-	x)/2.	These	are	valid	probability	distributions:	the
denominators	are	both	positive,	the	numerators	are	both	positive	(since	x	is
between	0	and	1),	and	the	numerators	are	both	less	than	the	denominators.

So	does	the	batter	anticipate	fastballs	more	frequently	with	a	runner	on	third
base?	To	find	out,	take	the	derivative	of	the	batter’s	mixed	strategy	in
equilibrium:	σGF	=	(1	+	x)/2
σGF	=	1/2	+	x/2
σGF’	=	(1/2	+	x/2)’
σGF’	=	(1/2)’	+	(x/2)’
σGF’	=	(x/2)’
σGF’	=	1/2
	

The	derivative	of	σGF	is	positive	regardless	of	the	value	of	x,	so	the
probability	the	batter	guesses	fastball	increases	as	x	increases.	In	essence,	the



batter	plays	it	safe.	Even	if	he	whiffs	at	the	curveball,	the	runner	on	third	will
occasionally	score.	As	such,	he	concentrates	more	frequently	on	the	fastball.

While	the	batter’s	optimal	strategy	is	intuitive,	the	pitcher’s	optimal	strategy
is	comparatively	strange.	To	solve	for	it,	begin	by	finding	the	batter’s	expected

utility	for	guessing	fastball:	
The	batter	earns	1	with	probability	σTF	and	x	with	probability	1	–	σTF.	As	an

equation:	EUGF	=	(σTF)(1)	+	(1	–	σTF)(x)	Next,	find	the	batter’s	expected	utility

for	guessing	curveball:	
This	time,	he	earns	0	with	probability	σTF	and	1	+	x	with	probability	(1	–

σTF).	As	an	equation:	EUGC	=	(σTF)(0)	+	(1	–	σTF)(1	+	x)	Now	set	those	expected
utilities	equal	to	each	other	and	solve	for	σTF:	EUGF	=	EUGC

EUGF	=	(σTF)(1)	+	(1	–	σTF)(x)	EUGC	=	(σTF)(0)	+	(1	–	σTF)(1	+	x)	(σTF)(1)	+	(1	–
σTF)(x)	=	(σTF)(0)	+	(1	–	σTF)(1	+	x)	σTF	+	x	–	xσTF	=	1	–	σTF	+	x	–	xσTF
σTF	=	1	–	σTF
2σTF	=	1
σTF	=	1/2
	

So	when	the	pitcher	throws	fastballs	half	of	the	time	and	curveballs	the	other
half	of	the	time,	the	batter	is	indifferent	between	guessing	fastball	and	guessing
curveball.	Notice	that	the	x	disappeared	from	this	equation.	Thus,	the	pitcher’s
optimal	strategy	does	not	vary	on	this	interval!	Even	if	she	has	great	control	of
her	curveball	(say,	x	=	.01)	or	is	wild	(x	=	.99),	she	still	throws	the	curveball	at
the	same	frequency.	But	when	her	curveballs	become	too	wild	(x	>	1),	she
suddenly	stops	throwing	them	altogether.

	



3.4.5:	Comparative	Statics	of	Take	or	Share	(or	Lack	Thereof)
Not	all	games	have	interesting	comparative	statics.	In	fact,	the	equilibria	of

some	games	will	not	change	at	all	even	as	you	alter	some	of	its	features.
For	example,	suppose	you	were	asked	to	discuss	how	the	partially	mixed

strategy	Nash	equilibria	of	the	take	or	share	game	change	as	a	function	of	the
value	of	the	good	v	>	0.	Recall	the	matrix	of	the	game	looked	like	this:

In	the	partially	mixed	strategy	Nash	equilibrium,	one	player	selects	take	as	a
pure	strategy	while	the	other	freely	mixes	between	take	and	share.	More
explicitly,	we	can	write	those	equilibria	as	<take,	σtake>	and	<σtake,	take>,	where	0
<	σtake	<	1.	But	note	that	none	of	those	equilibrium	strategies	change	as	a
function	on	v.	If	a	player	plays	σtake	for	one	value	of	v,	he	or	she	can	play	that
exact	same	mixture	for	any	other	value	of	v.	Thus,	the	exact	value	of	v	is	trivial.

Do	not	over	think	these	situations;	such	trivial	comparative	statics	are	well
within	the	realm	of	possibility,	and	you	need	to	be	prepared	to	take	a	hands-off
approach	should	they	surface.
	



Takeaway	Points
1)	Comparative	statics	measure	how	changing	a	game’s	inputs	alter	its
equilibrium	outputs.
2)	Some	games	lack	interesting	comparative	statics.



Lesson	3.5:	Generalizing	Mixed	Strategy	Nash
Equilibrium

Although	we	have	been	working	with	mixed	strategies	since	Lesson	1.5,	our
applications	have	been	limited.	In	fact,	we	have	only	found	mixed	strategy
equilibria	in	which	players	mix	between	two	strategies.	But	many	games	have
three	or	more	strategies.	If	we	limited	our	knowledge	of	mixing	to	just	the
simple	cases,	we	would	be	powerless	whenever	we	encountered	more	complex
games.	Consequently,	we	must	generalize	our	knowledge	of	mixed	strategy
Nash	equilibrium.

This	lesson	covers	two	key	features	of	MSNE.	First,	we	will	see	that	all	pure
strategies	played	in	a	mixed	strategy	must	generate	the	same	expected	utility	in
equilibrium.	Second,	and	as	a	result	of	the	first	fact,	we	can	eliminate	weakly
dominated	strategies	from	some	potential	equilibria	without	doing	any	messy
mathematical	work.
	



3.5.1:	The	Support	of	a	Mixed	Strategy
In	games	with	a	finite	number	of	strategies,	we	say	a	pure	strategy	is	in	the

support	of	a	mixed	strategy	if	and	only	if	the	probability	of	playing	that	pure
strategy	in	the	mixed	strategy	is	positive.

To	see	what	this	means,	consider	the	following	game:	

Player	2	has	three	strategies:	left,	center,	and	right.	Suppose	player	2	used
the	mixture	σleft	=	.1,	σcenter	=	.3,	and	σright	=	.6.	Then	left,	center,	and	right	are	all
in	the	support	of	player	2’s	mixed	strategy,	since	she	plays	each	of	them	some
percentage	of	the	time.	However,	if	player	2	switched	her	mixture	to	σleft	=	.7,
σcenter	=	.3,	and	σright	=	.0,	right	would	no	longer	be	in	the	support	of	her	mixed
strategy,	as	she	would	never	select	it.

In	a	general	game,	suppose	the	players	mix	in	equilibrium.	Then	we
immediately	know	something	about	the	pure	strategies	in	the	support	of	the
players’	mixed	strategies:	they	all	yield	the	same	expected	utility	in	equilibrium.

Why	is	this	the	case?	Recall	that	a	Nash	equilibrium	is	a	set	of	strategies,
one	for	each	player,	such	that	no	player	has	incentive	to	change	his	or	her
strategy	given	what	the	other	players	are	doing.	Imagine	player	1	mixed	between
up	and	down.	In	the	above	game,	if	up	generated	an	expected	utility	of	-.5
against	player	2’s	mixed	strategy	and	down	generated	an	expected	utility	of	.3,
player	1	clearly	would	not	want	to	mix.	If	he	did	mix,	then	whenever	his	mixed
strategy	told	him	to	move	down,	he	could	move	up	instead.	Such	a	deviation
improves	his	payoff	from	some	combination	of	-.5	to	.3	to	.3	with	certainty.
Playing	up	any	portion	of	the	time	unnecessarily	lowers	his	payoff.	As	a	result,	if
player	1	mixes	between	two	or	more	strategies,	player	2’s	strategy	must	induce
player	1	to	be	indifferent	between	those	strategies.

We	have	been	subtly	using	this	principle	since	we	started	working	with
mixed	strategy	Nash	equilibrium.	Think	back	to	the	weighted	matching	pennies
game,	which	we	used	to	introduce	the	mixed	strategy	algorithm:	

When	we	solved	this	game	using	the	mixed	strategy	algorithm,	we
calculated	each	player’s	expected	utility	for	his	or	her	pure	strategies	as	a



function	of	the	other	player’s	mixed	strategy.	We	then	set	those	expected	utilities
equal	to	each	other	and	solved	for	the	mixed	strategy	that	makes	the	equality
possible.	In	essence,	we	found	the	mixed	strategy	that	induces	the	other	player’s
indifference.

The	rule	about	indifference	also	prompted	us	to	consider	partially	mixed
strategy	Nash	equilibrium	more	carefully.	Recall	back	to	the	matrix	of	Selten’s

game	Lesson	1.8:	
If	player	1	selects	down,	player	2	always	earns	2	whether	she	picks	left	or

right:	
Thus,	by	playing	down	as	a	pure	strategy,	player	1	has	induced	indifference

in	player	2’s	selection.	Consequently,	player	2	is	free	to	mix,	which	is	why	we
had	to	look	at	which	mixtures	still	incentivize	player	1	to	maintain	his	down
strategy.

	



3.5.2:	A	Necessary	but	not	Sufficient	Condition
It	is	necessary	for	all	pure	strategies	in	the	support	of	a	mixed	to	yield	the

same	expected	utility.	However,	it	is	not	a	sufficient	condition.	In	other	words,
some	other	pure	strategies	may	produce	the	same	expected	utility	for	a	player
but	may	not	be	played	in	a	particular	mixed	strategy	Nash	equilibrium.

Consider	the	first	game	from	last	section,	which	is	a	revised	edition	of
matching	pennies:

If	we	ignore	player	2’s	right	strategy,	the	game	is	an	exact	duplicate	of
matching	pennies.	In	the	equilibrium	of	the	original	game,	player	1	plays	up	with
probability	1/2	and	down	with	probability	1/2.	Meanwhile,	player	2	selects	left
with	probability	1/2	and	center	with	probability	1/2.	Each	player	earns	0	in
equilibrium.

Is	this	mixture	still	a	Nash	equilibrium	of	the	revised	game?	Player	1	cannot
profitably	deviate;	given	player	2’s	mixed	strategy,	he	earns	0	regardless	of
whether	he	chooses	up	or	down.	Since	player	2	never	selects	right,	player	1
cannot	earn	the	5	he	receives	if	the	players	reach	the	<down,	right>	outcome.

Player	2	is	similarly	stuck.	Given	player	1’s	strategy,	she	earns	0	if	she	plays
left	and	0	if	she	plays	center;	the	mixed	strategy	algorithm	ensures	this.	She
earns	0	if	she	plays	right	as	well:

Half	of	the	time,	player	1	picks	up	and	player	2	earns	0;	the	other	half	of	the
time,	player	1	selects	down	and	player	2	receives	0.	Thus,	player	2	cannot
profitably	deviate	to	right	given	player	1’s	mixed	strategy.	In	turn,	the
equilibrium	strategies	of	matching	pennies	are	still	a	mutual	best	response	to	the
revised	game,	so	it	is	an	equilibrium	here	as	well.

We	can	now	see	why	the	rule	about	the	strategies	in	the	support	of
equilibrium	mixed	strategies	is	not	a	sufficient	condition.	If	it	were,	player	2
would	have	to	play	right	in	her	mixture,	as	it	produces	the	same	expected	utility
of	0	given	player	1’s	mixed	strategy.	But	the	equilibrium	we	found	has	player	2
only	mix	between	left	and	center.

	



3.5.3:	A	Trick	with	Weak	Dominance
Weak	dominance	is	fickle.	If	we	eliminate	a	weakly	dominated	strategy	from

a	game,	any	remaining	Nash	equilibria	are	also	Nash	equilibria	in	the	unreduced
game.	However,	some	Nash	equilibria	may	exist	in	the	original	game	that	are	not
in	the	reduced	game.	As	a	result,	after	eliminating	weakly	dominated	strategies
from	the	game,	we	still	have	to	go	back	and	solve	the	original	game.

If	we	have	to	start	over	anyway,	why	waste	effort	finding	weakly	dominated
strategies?	As	it	turns	out,	knowing	weakly	dominated	strategies	makes	finding
mixed	strategy	equilibria	substantially	less	time	consuming.	If	a	player	mixes
among	all	of	his	or	her	strategies,	in	a	game	with	a	finite	number	of	strategies,
the	other	player	cannot	play	a	weakly	dominated	strategy	in	equilibrium.

Why	not?	Remember	back	to	the	take	or	share	game:	

If	player	2	mixes	between	take	and	share,	player	1	cannot	choose	share	with
positive	probability.	Whenever	player	2	randomly	selects	take,	player	1	earns	0

regardless	of	his	choice:	
But	when	player	2	picks	share,	which	occurs	some	percentage	of	the	time,

player	1	earns	strictly	more	from	choosing	take:	
If	player	1	knew	that	player	2	would	always	select	take,	he	would	be

indifferent	between	share	and	take.	But	if	player	2	is	also	playing	share	some
percentage	of	the	time,	player	1	must	play	take.	If	he	chooses	share,	he	earns	4
some	percentage	of	the	time	and	0	the	rest	of	the	time.	But	if	he	selects	take
instead,	he	earns	8	that	same	percentage	of	the	time	and	0	the	rest	of	the	time.	In
both	of	these	cases,	the	“rest	of	the	time”	part	cancels	out,	but	the	8	from	take	is
always	greater	than	the	4	from	share.	The	strategies	in	the	support	of	a	mixed
strategy	Nash	equilibrium	must	yield	the	same	expected	utility.	This	is	not
possible	if	player	1	tries	mixing	as	well;	take	provides	a	strictly	greater	amount
than	share	if	player	2	is	mixing.	As	such,	player	1	cannot	mix	if	player	2	mixes.

The	result	generalizes	beyond	2x2	games.	Suppose	strategy	A	weakly



dominates	strategy	B	for	a	particular	player,	and	also	suppose	the	opponent
mixed	among	all	n	of	his	or	her	pure	strategies.	Let	those	strategies	be	1,	2,	…	,
n	which	the	mixing	player	selects	with	probabilities	σ1,	σ2,	…	,	σn.	Additionally,
let	EUA,1,	EUA,2,	…	,	EUA,n	be	the	original	player’s	expected	utilities	for	when	he
or	she	plays	A	and	his	or	her	opponent	plays	the	corresponding	strategy.	Then
the	original	player’s	expected	utility	for	A	equals:	EUA	=	(σ1)[EUA,1]	+	(σ2)
[EUA,2]	+	…	+	(σn)[EUA,n]

	
We	can	likewise	define	the	original	player’s	payoffs	for	B	as	follows:	EUB	=

(σ1)[EUB,1]	+	(σ2)[EUB,2]	+	…	+	(σn)[EUB,n]
	
By	definition	of	weak	dominance,	EUA,1	≥	EUB,1,	EUA,2	≥	EUB,2,	and	so	forth.

Since	all	of	the	probabilities	σ1,	σ2,	…	,	σn	are	greater	than	or	equal	to	zero,	it
follows	that	(σ1)EUA,1	≥	(σ1)EUB,1,	(σ1)EUA,2	≥	(σ1)EUB,2,	and	so	forth.		But	at
least	one	of	these	weak	inequalities	must	hold	strictly.	Thus,	when	we	sum	all	of
them	together,	the	expected	utility	for	A	must	be	greater	than	the	expected	utility
for	B.	Consequently,	the	original	player	cannot	mix	between	A	and	B;	to	be
willing	to	do	so,	his	or	her	expected	utilities	for	A	and	B	must	be	equal	to	one
another,	which	we	have	shown	is	not	the	case.

This	rule	is	extremely	helpful	when	we	break	away	from	the	2x2	games.
Consider	this	game,	which	we	explored	in	Lesson	1.2:	

Middle	weakly	dominates	both	up	and	down	for	player	1.	Through	iterated
elimination	of	weakly	dominated	strategies,	we	discovered	<middle,	left>	and
<middle,	right>	were	the	only	pure	strategy	Nash	equilibria.	But	to	fully	solve
the	game,	we	have	to	search	for	partially	mixed	strategy	and	totally	mixed
strategy	Nash	equilibria.

Visually,	we	have	to	investigate	four	cases:	



The	top	left	category	is	pure	strategy	Nash	equilibrium,	which	we	have	done
already.	The	bottom	right	category	is	totally	mixed	strategy	Nash	equilibrium.
Finally,	the	top-right	and	bottom-left	categories	are	partially	mixed	strategy
Nash	equilibrium.	Whenever	we	solve	a	game,	we	either	must	establish	the
existence	of	all	equilibria	or	prove	the	non-existence	of	any	equilibria	in	each	of
these	categories.

We	can	rule	out	the	totally	mixed	strategy	case	with	ease.	Recall	that	middle
weakly	dominates	up	and	down;	thus,	middle	is	player	1’s	only	strategy	that	is
not	weakly	dominated.	If	player	2	is	mixing,	she	must	be	playing	all	of	her
strategies.	But	if	player	2	is	playing	all	of	her	strategies	and	player	1	has	weakly
dominated	strategies,	player	1	cannot	play	those	weakly	dominated	strategies.
Therefore,	the	only	strategy	he	can	play	is	middle.	But	if	we	are	interested	in
finding	a	totally	mixed	strategy	Nash	equilibrium,	player	1	cannot	play	a	pure
strategy.	As	such,	this	game	has	no	totally	mixed	strategy	Nash	equilibria:	

Note	that	we	could	have	shown	no	totally	mixed	strategy	Nash	equilibria
exist	by	writing	out	the	indifference	requirements	and	solving	for	a	mixed
strategy	that	meets	those	requirements.	However,	that	process	would	have	been
extremely	time	consuming.	We	would	have	had	to	consider	four	different	types
of	mixtures	from	player	1:	mixing	among	all	three	of	his	strategies,	mixing	only
between	up	and	middle,	mixing	only	between	up	and	down,	and	mixing	only
between	middle	and	down.	For	once,	weak	dominance	saved	us	time:	knowing
that	up	and	down	are	weakly	dominated	meant	we	did	not	have	to	consider	all	of
these	cases.

Fortuitously,	the	process	also	left	us	close	to	solving	for	the	partially	mixed
strategy	Nash	equilibrium	in	which	player	1	plays	a	pure	strategy	and	player	2
mixes.	We	know	that	if	player	2	mixes,	player	1	must	play	middle	as	a	pure
strategy.	For	player	2	to	be	willing	to	mix,	she	must	earn	the	same	expected
utility	for	both	pure	strategies	in	the	support	of	her	mixture.	In	this	case,	she	is

indeed	indifferent:	
Regardless	of	her	strategy,	player	2	always	earns	3	if	player	1	selects	middle

as	a	pure	strategy.	Thus,	we	have	discovered	a	range	of	partially	mixed	strategy



Nash	equilibria	in	which	player	1	selects	middle	as	a	pure	strategy	and	player	2
mixes	freely	between	left	and	right.	That	eliminates	the	top	right	box	on	our

equilibria	chart:	
Now	we	must	check	for	partially	mixed	strategy	Nash	equilibria	in	which

player	1	mixes	and	player	2	uses	a	pure	strategy.	While	the	number	of	possible
mixtures	for	player	1	is	enormous,	player	2	can	only	play	left	or	right	as	a	pure
strategy.	As	such,	let’s	consider	the	two	cases	based	off	of	player	2’s	two	pure

strategies.	First,	suppose	player	2	chose	left:	
Recall	that	if	player	1	is	willing	to	mix,	every	pure	strategy	in	the	support	of

his	mixed	strategy	must	yield	the	same	expected	utility.	But	this	implies	player	1
cannot	put	positive	probability	on	down,	since	up	and	middle	provide	a	greater
payoff.	Thus,	if	player	2	selects	left	and	player	1	is	mixing,	player	1’s	mixture
must	be	between	up	and	middle	exclusively.

In	turn,	we	need	to	find	which	mixtures	between	up	and	down	(if	any)
induce	player	2	to	choose	left	as	a	pure	strategy	in	equilibrium.	We	can	find
these	mixed	strategies	by	calculating	player	2’s	expected	utility	for	left	and	right
as	a	function	of	player	1’s	mixture.	First,	let’s	find	her	expected	utility	for	left:	

Player	2	earns	1	with	probability	σleft	and	3	with	probability	1	–	σleft.	As	an
equation:	EUleft	=	(σleft)(1)	+	(1	–	σleft)(3)	Now	suppose	player	2	moved	right:	

This	time,	she	earns	2	with	probability	σleft	and	3	with	probability	1	–	σleft.	As
an	equation:	EUright	=	(σleft)(2)	+	(1	–	σleft)(3)	Player	2	is	willing	to	play	left	as	a



pure	strategy	if	her	expected	utility	for	left	is	at	least	as	great	as	her	expected
utility	for	right:	EUleft	≥	EUright	EUleft	=	(σleft)(1)	+	(1	–	σleft)(3)	EUright	=	(σleft)(2)	+
(1	–	σleft)(3)	(σleft)(1)	+	(1	–	σleft)(3)	≥	(σleft)(2)	+	(1	–	σleft)(3)	(σleft)(1)	≥	(σleft)(2)
Note	that	we	are	looking	for	a	true	mixture	from	player	1,	so	we	know	σleft	>	0.
As	such,	we	can	divide	by	it:	(σleft)(1)	≥	(σleft)(2)	1	≥	2

	
We	see	a	contradiction.	Consequently,	if	player	1	is	mixing	between	up	and

middle,	player	2	is	never	willing	to	select	left;	she	must	always	choose	right.	In
turn,	no	partially	mixed	strategy	Nash	equilibrium	exists	in	which	player	2
selects	left	as	a	pure	strategy.

The	remaining	case	to	check	is	whether	player	2	can	choose	right	as	a	pure
strategy	in	a	partially	mixed	strategy	Nash	equilibrium.	Consider	player	1’s

payoffs	if	she	moves	right:	
To	be	willing	to	mix,	all	pure	strategies	in	the	support	of	player	1’s	mixed

strategy	must	provide	the	same	expected	utility.	As	a	result,	player	1	cannot	play
up	if	player	2	chooses	right	as	a	pure	strategy.	Instead,	he	must	be	mixing
between	middle	and	down.

Consequently,	we	must	find	which	mixtures	between	middle	and	down	(if
any)	induce	player	2	to	want	to	play	right.	Specifically,	we	must	calculate	player
2’s	expected	utility	for	left	and	right	as	a	function	of	player	1’s	mixed	strategy
and	find	which	strategies	make	right	provide	at	least	as	great	of	an	expected
utility	as	left.

Let’s	start	with	player	2’s	expected	utility	for	right:	
Player	2	earns	3	with	probability	σmiddle	and	-1	with	probability	1	–	σmiddle.	As

an	equation:	EUright	=	(σmiddle)(3)	+	(1	–	σmiddle)(-1)	Now	switch	to	player	2’s

expected	utility	for	left:	
This	time,	she	earns	3	with	probability	σmiddle	and	2	with	probability	1	–



σmiddle.	As	an	equation:	EUleft	=	(σmiddle)(3)	+	(1	–	σmiddle)(2)	Player	2	is	willing	to
play	right	if	her	expected	utility	for	right	is	at	least	as	great	as	her	expected
utility	for	left:	EUright	≥	EUleft	EUright	=	(σmiddle)(3)	+	(1	–	σmiddle)(-1)	EUleft	=
(σmiddle)(3)	+	(1	–	σmiddle)(2)	(σmiddle)(3)	+	(1	–	σmiddle)(-1)	≥	(σmiddle)(3)	+	(1	–	σmiddle)
(2)	(1	–	σmiddle)(-1)	≥	(1	–	σmiddle)(2)	Again,	we	are	assuming	player	1	is	truly
mixing,	so	1	–	σmiddle	>	0.	Thus,	we	may	divide	by	it:	(1	–	σmiddle)(-1)	≥	(1	–	σmiddle)
(2)	-1	≥	2

	
We	have	derived	a	contradiction.	-1	is	less	than	2,	so	player	2	is	never

willing	to	play	right	if	player	1	mixes	between	middle	and	down.	But	that	means
player	2	using	right	as	a	pure	strategy	cannot	be	a	part	of	a	partially	mixed
strategy	Nash	equilibrium.

That	rules	out	all	possible	cases	of	partially	mixed	strategy	Nash	equilibria
in	which	player	2	selects	a	pure	strategy.	In	turn,	we	can	fill	in	the	last	portion	of

the	equilibrium	table:	
Thus,	we	are	done	with	this	game.	Two	PSNE	exist,	<middle,	left>	and

<middle,	right>,	and	there	is	a	range	of	partially	mixed	strategy	Nash
equilibrium	in	which	player	1	chooses	middle	as	a	pure	strategy	and	player	2
mixes	freely	between	left	and	right.
	



Takeaway	Points
1)	A	pure	strategy	is	in	the	support	of	a	mixed	strategy	if	the	mixed	strategy
calls	for	playing	that	pure	strategy	with	positive	probability.
2)	In	a	MSNE,	all	pure	strategies	in	the	support	of	a	mixed	strategy	must
yield	the	same	payoff.
3)	If	the	opposing	player	is	mixing	among	all	of	his	or	her	strategies,	then	the
other	player	cannot	play	a	weakly	dominated	strategy	with	positive
probability	in	equilibrium.
4)	Use	a	table	to	organize	possible	equilibrium	configurations	to	keep	your
thoughts	in	order.



Lesson	3.6:	Rock-Paper-Scissors
You	have	almost	certainly	played	rock-paper-scissors	(or	roshambo)	at	some

point	in	your	life.	In	this	lesson,	we	will	formally	derive	its	Nash	equilibrium.
Although	you	can	likely	guess	that	equilibrium,	even	slight	changes	to	the
payoffs	quickly	makes	guessing	the	solution	prohibitively	difficult.	From	an
empirical	standpoint,	these	changes	are	important:	a	generalized	version	of	rock-
paper-scissors	predominates	the	strategic	setting	of	many	video	games	and	card
games.	Consequently,	as	the	lesson	progresses,	we	will	work	toward	a	general
solution	to	rock-paper-scissors.

As	always,	it	helps	to	draw	the	matrix	of	a	game.	Recall	that	rock	smashes
scissors,	scissors	cuts	paper,	and	paper	covers	rock.	A	player	holding	the
winning	item	receives	1	point	while	the	loser	earns	-1.	Players	score	0	if	they	tie
by	revealing	the	same	object.

If	we	fold	together	all	of	that	information,	we	arrive	at	this	extensive	form:

Let’s	mark	the	game’s	best	responses.	If	your	opponent	is	playing	rock,	your
unique	best	response	is	paper;	if	your	opponent	is	playing	paper,	your	unique
best	response	is	scissors;	and	if	your	opponent	is	playing	scissors,	your	best
response	is	rock.

Using	that	intuition,	we	can	place	a	star	next	to	all	of	the	winning	payoffs	to
complete	our	goal:

All	of	the	1s	earn	a	star	and	everything	else	does	not.	However,	no	box
contains	a	star	for	each	payoff,	which	means	no	PSNE	exists.	As	such,	we	must
look	into	mixed	strategies.	Intuitively,	you	might	guess	that	each	player
randomizes	evenly	among	his	or	her	strategies.	That	is,	both	player	1	and	player
2	throw	rock	with	probability	1/3,	paper	with	1/3,	and	scissors	with	1/3.

Your	intuition	is	correct.	We	can	verify	this	by	showing	that	such	a



probability	distribution	leaves	both	players	indifferent	among	all	three	strategies.
Let’s	look	at	player	1’s	expected	utility	for	each	of	his	pure	strategies	against
player	2’s	mixed	strategy,	starting	with	rock:

If	player	2	randomizes	evenly	among	all	three	of	her	strategies,	player	1
earns	0	with	probability	1/3,	-1	with	probability	1/3,	and	1	with	probability	1/3.
As	an	equation:
	
EUrock	=	(1/3)(0)	+	(1/3)(-1)	+	(1/3)(1)
EUrock	=	-1/3	+	1/3
EUrock	=	0

	
So	player	1’s	expected	utility	equals	0.	He	earns	the	same	for	paper	and

scissors.
Here	is	the	calculation	for	paper:

This	time,	he	earns	1	with	probability	1/3,	0	with	probability	1/3,	and	-1	with
probability	1/3.	As	an	equation:
	
EUpaper	=	(1/3)(1)	+	(1/3)(0)	+	(1/3)(-1)
EUpaper	=	1/3	–	1/3
EUpaper	=	0

	
So	his	expected	utility	equals	0	once	again.
Now	consider	scissors:

Similar	to	before,	he	earns	-1	with	probability	1/3,	1	with	probability	1/3,
and	0	with	probability	1/3.	As	an	equation:
	
EUscissors	=	(1/3)(-1)	+	(1/3)(1)	+	(1/3)(0)
EUscissors	=	-1/3	+	1/3
EUscissors	=	0



	
Thus,	we	have	shown	player	1’s	expected	utility	equals	0	for	each	of	his

strategies.	Thus,	he	may	freely	mix	among	them.	If	he	chooses	the	same	mixed
strategy	(1/3	rock,	1/3	paper,	and	1/3	scissors),	player	2	is	similarly	indifferent
among	her	strategies,	making	it	optimal	to	maintain	her	mixture	as	well.
Consequently,	the	game	reaches	an	equilibrium.

There	are	a	couple	of	problems	with	this	guessing	method.	So	far,	we	know
that	a	single	mixed	strategy	Nash	equilibria	exists.	We	know	nothing	about	the
uniqueness	of	that	equilibrium—another	mixed	strategy	among	all	three
strategies	could	also	leave	each	player	indifferent.	Moreover,	a	player	could
possibly	randomize	between	two	strategies	and	ignore	the	third	in	equilibrium.
To	properly	solve	this	game,	we	must	have	a	formal	way	of	deriving	its
equilibria.

To	see	the	second	issue,	consider	a	slightly	different	version	of	the	game:

If	we	imagine	the	payoffs	as	dollars	exchanged,	this	version	of	rock-paper-
scissors	now	requires	a	rock	player	to	fork	over	two	dollars	to	a	paper	opponent.

The	1/3,	1/3,	1/3	mixture	is	no	longer	a	Nash	equilibrium;	the	change	in
expected	utilities	breaks	the	players’	indifference.	To	see	this,	first	consider
player	1’s	expected	utility	for	rock:

Now	player	1	earns	0	with	probability	1/3,	-2	with	probability	1/3,	and	1
with	probability	1/3.	As	an	equation:
	
EUrock	=	(1/3)(0)	+	(1/3)(-2)	+	(1/3)(1)
EUrock	=	-2/3	+	1/3
EUrock	=	-1/3
	

Next,	consider	player	1’s	expected	utility	for	paper:

This	time,	he	earns	2	with	probability	1/3,	0	with	probability	1/3,	and	-1	with



probability	1/3.	As	an	equation:
	
EUpaper	=	(1/3)(2)	+	(1/3)(0)	+	(1/3)(-1)
EUpaper	=	2/3	–	1/3
EUpaper	=	1/3

	
Already,	we	have	a	problem.	Player	1’s	expected	utility	for	paper	is	greater

than	his	expected	utility	for	rock.	If	a	player	is	willing	to	mix,	each	strategy	in
the	support	of	his	mixed	strategy	must	provide	the	same	expected	utility.	Paper
and	rock	generate	different	expected	utilities,	so	they	cannot	be	in	the	same
mixed	strategy.

The	problem	continues	with	scissors:

These	are	the	same	payoffs	as	in	the	original	version	of	rock-paper-scissors,
so	we	know	that	player	1’s	expected	utility	is	0	here.	That	means	paper	provides
the	greatest	expected	utility	against	player	2’s	1/3,	1/3,	1/3	mixture,	which	in
turn	implies	that	player	1	wants	to	choose	paper	as	a	pure	strategy.	But	if	player
1	uses	paper	exclusively,	player	2’s	unique	best	response	is	to	select	scissors	as	a
pure	strategy.	However,	that	leads	to	player	1	wanting	to	switch	to	rock
exclusively.	This	begins	a	cycle.	The	mixed	strategy	Nash	equilibrium	from	the
previous	version	of	the	game	simply	does	not	work	here.

We	could	try	plugging	in	other	mixed	strategies,	but	the	guess-and-check
process	is	time	consuming.	Consequently,	we	need	to	develop	a	method	which
proves	the	uniqueness	of	equilibria	and	allows	us	to	directly	solve	slightly
different	versions	of	rock-paper-scissors.	The	next	two	sections	work	toward	that
goal.	First,	we	will	learn	about	an	important	shortcut	we	can	use	with	zero	sum
games	which	enables	us	to	quickly	rule	out	possible	equilibrium	strategies.
Using	that	knowledge,	we	will	then	transition	into	a	general	form	of	rock-paper-
scissors	and	derive	its	unique	mixed	strategy	Nash	equilibrium.

	



3.6.1:	A	Trick	with	Symmetric,	Zero	Sum	Games
Rock-paper-scissors	is	a	symmetric	and	zero	sum	game;	each	player	has	the

same	strategies	and	payoffs	associated	with	those	strategies,	and	the	sum	of	both
players’	payoffs	in	each	outcome	is	zero.	Whenever	a	game	meets	these
requirements,	we	know	something	important	about	the	outcome	of	the	game:
each	player’s	expected	utility	must	equal	zero	in	equilibrium.

Why	is	this	true?	Suppose	it	was	not	the	case.	That	is,	without	loss	of
generality,	suppose	player	1’s	expected	utility	was	positive	and	player	2’s
expected	utility	was	negative	in	equilibrium.	For	our	equilibrium	conditions	to
hold,	player	2	must	not	have	a	profitable	deviation.

However,	consider	a	strategy	stealing	argument.	Player	2	could	simply	adopt
player	1’s	strategy.	Under	this	new	strategy,	the	good	outcomes	occur	equally	as
frequently	as	the	bad	outcomes	for	player	2.	Thus,	player	2’s	expected	utility
must	equal	zero.	But	if	she	previously	earned	a	negative	amount,	this	means	that
player	2	has	a	profitable	deviation.	Therefore,	player	1	cannot	have	a	greater
expected	utility	than	player	2	in	equilibrium.

Since	this	argument	works	both	ways,	player	2	cannot	have	a	greater
expected	utility	than	player	1	equilibrium	either.	The	only	way	for	both	of	these
conditions	to	hold	simultaneously	is	if	each	player	earns	0	in	equilibrium.

Armed	with	this	knowledge,	we	can	easily	show	that	the	players	cannot	mix
between	only	two	strategies	in	equilibrium	in	the	basic	rock-paper-scissors
game.	Let’s	focus	on	player	1’s	strategies,	knowing	that	the	symmetry	of	the
game	implies	that	these	cases	also	cover	player	2’s	strategies.	We	have	three
mixed	strategies	for	player	1	to	consider:	(1)	rock	and	paper	but	not	scissors,	(2)
rock	and	scissors	but	not	paper,	and	(3)	paper	and	scissors	but	not	rock.

Let’s	start	by	considering	case	1:

Rather	than	deriving	the	precise	best	response,	note	that	player	2	can	choose
paper	and	earn	some	positive	amount.	Let	σrock	be	the	probability	player	1
chooses	rock	and	1	–	σrock	be	the	probability	player	2	picks	paper.	Then	player
2’s	expected	utility	for	paper	equals:
	
EUpaper	=	(σrock)(1)	+	(1	–	σrock)(0)
EUpaper	=	σrock

	



Since	player	1	is	truly	mixing,	we	know	σrock	>	0.	Thus,	whatever	player	2’s
best	response	is,	she	must	be	earning	a	positive	expected	utility	if	player	1	only
mixes	between	rock	and	paper.	After	all,	paper	earns	a	strictly	positive	amount.
Any	best	response	candidate	that	earns	0	or	less	must	be	worse	than	paper	and	is
therefore	not	a	best	response.

Note	that	we	are	not	claiming	paper	is	definitely	the	best	response.	If	we
wanted	to	find	the	precise	best	response,	we	would	have	to	do	a	little	more
digging.	For	example,	if	player	1	selects	paper	a	vast	majority	of	the	time,
scissors	is	a	better	response	than	paper	for	player	2.	Although	player	2	accepts
some	risk	of	losing	by	selecting	scissors,	she	will	win	so	much	more	frequently
that	it	will	make	up	for	the	difference.	(Rock,	of	course,	is	strictly	worse	than
paper	against	player	1’s	strategy,	so	it	is	out	of	the	question.)

However,	all	of	that	information	is	superfluous	once	we	know	that	player	2’s
best	response	to	player	1’s	strategy	generates	a	positive	expected	utility.	Since
the	game	is	zero	sum,	player	1	must	earn	a	negative	amount	when	player	2	uses
her	best	response.	But	because	both	players	must	have	an	expected	utility	of	0	in
symmetric,	zero	sum	games,	player	1’s	original	strategy	cannot	be	a	part	of	a
mutual	best	response.	Therefore,	player	1	cannot	use	his	mixture	between	rock
and	paper	in	a	Nash	equilibrium.

We	can	repeat	this	argument	analogously	with	the	other	two	cases.	Let’s
check	a	mixture	between	rock	and	scissors:

Now	player	2	can	select	rock	and	guarantee	a	positive	payoff.	Although
paper	could	possibly	be	a	better	response	if	player	1	relies	more	heavily	on	rock,
that	information	remains	superfluous.	Regardless	of	player	2’s	exact	optimal
choice,	player	1’s	expected	utility	must	be	negative.	But	this	violates	the	rule
about	the	equilibria	of	symmetric,	zero	sum	games,	so	we	can	conclude	that
mixtures	exclusively	between	rock	and	scissors	will	not	work	either.

Lastly,	consider	a	mixture	between	paper	and	scissors:

This	time,	scissors	acts	as	the	fail-safe.	If	player	2	uses	it,	she	must	earn	a
positive	payoff.	But	just	as	before,	that	implies	her	best	response	generates	a
positive	expected	utility,	which	in	turn	gives	player	1	a	negative	expected	utility.



Since	player	1	cannot	earn	a	negative	expected	utility	in	equilibrium,	we	can
conclude	that	mixtures	exclusively	between	paper	and	scissors	will	not	work.

In	the	course	of	this	lesson,	we	have	shown	that	rock-paper-scissors	has	no
pure	strategy	Nash	equilibria	or	mixed	strategy	Nash	equilibria	in	which	a	player
only	mixes	between	two	strategies.	We	also	correctly	guessed	the	existence	of	a
mixed	strategy	Nash	equilibrium	in	which	each	player	mixes	among	all	three
strategies.	However,	we	have	not	proven	the	uniqueness	of	this	equilibrium.	The
next	section	covers	the	uniqueness	part	by	showing	how	to	solve	for	a
generalized	version	of	rock-paper-scissors.

	



3.6.2:	Generalized	Rock-Paper-Scissors

Consider	the	following	game:	
To	maintain	the	flavor	of	rock-paper-scissors,	constrain	x,	y,	and	z	such	that

x	>	0,	y	>	0,	and	z	>	0.	This	ensures	that	paper	still	beats	rock,	scissors	still
trumps	paper,	and	rock	still	destroys	scissors.	However,	by	letting	the	exogenous
variables	be	any	strictly	positive	value,	we	can	vary	the	lethality	of	each	strategy
against	each	other	strategy.	For	example,	if	x	is	extremely	large,	then	paper
obliterates	rock,	and	the	rock	player	must	hand	a	large	sum	of	money	to	the
paper	player.

One	interpretation	of	this	game	is	like	regular	rock-paper-scissors,	except
different	matchups	of	strategies	results	in	different	amounts	of	dollars
exchanging	hands.	A	more	natural	interpretation	is	of	character	selection	in
video	games,	particularly	two	dimensional	fighting	games.	Characters	have
different	strengths	and	weaknesses,	which	leads	to	good	matchups	against	some
opposing	characters	and	bad	matchups	against	others.	Thus,	a	large	value	for	x
implies	that	the	“paper”	character	has	a	strong	matchup	versus	the	“rock”
character,	and	so	forth.

Regardless	of	the	interpretation,	this	game	has	no	PSNE.	We	can	see	this	by

marking	best	responses:	
Just	like	in	the	original	version	of	rock-paper-scissors,	all	of	the	positive

numbers	receive	an	asterisk.	However,	no	single	outcome	has	two	asterisks,	so
no	pure	strategy	Nash	equilibrium	exists.

Using	the	method	from	the	previous	section,	we	can	also	show	that	no	mixed
strategy	Nash	equilibrium	exists	in	which	a	player	mixes	exclusively	between
two	strategies.	To	see	this,	we	will	consider	player	1’s	strategies,	though	the
symmetry	of	the	game	implies	that	everything	below	also	applies	to	player	2.

Let’s	start	with	a	mixture	between	rock	and	paper:	



Paper	ensures	player	2	a	positive	expected	utility,	as	x	>	0.	This	implies	that
player	2’s	best	response	generates	a	positive	expected	utility.	In	turn,	player	1
must	earn	a	negative	expected	utility,	so	he	cannot	mix	exclusively	between	rock
and	paper	in	equilibrium.

Now	consider	a	mixture	between	rock	and	scissors:	

Here,	rock	does	the	heavy	lifting,	guaranteeing	player	2	a	positive	expected
utility	because	y	>	0.	That	starts	us	down	the	now-familiar	causal	chain	which
eventually	tells	us	that	player	1	cannot	use	a	mixture	exclusively	between	rock
and	scissors	in	equilibrium.

Finally,	suppose	player	1	mixes	between	paper	and	scissors:	

This	time,	scissors	is	the	fail-safe	strategy,	granting	a	positive	expected
utility	because	z	>	0.	As	such,	player	1	cannot	mix	exclusively	between	paper
and	scissors.

Rock-paper-scissors	is	a	finite	game,	so	it	must	have	an	equilibrium.	Since
said	equilibrium	is	not	in	pure	strategies	or	mixtures	involving	only	two
strategies,	both	players	must	be	mixing	among	all	three	strategies.	To	solve	for
the	mixed	strategy	that	leaves	the	opposing	player	indifferent	among	all	three	of
his	or	her	strategies,	we	calculate	a	player’s	expected	utility	for	all	of	his	or	her
pure	strategies,	set	those	expected	utilities	all	equal	to	one	another,	and	solve	for
the	critical	mixture.

This	will	be	an	involved	process,	so	let’s	take	it	one	step	at	a	time.	First,	we
need	to	define	player	2’s	mixed	strategy.	Let	σrock	>	0	be	the	probability	she
plays	rock,	σpaper	>	0	be	the	probability	she	plays	paper,	and	σscissors	>	0	be	the
probability	she	plays	scissors.	Since	σrock,	σpaper,	and	σscissors	represent	all	the
possible	strategy	choices,	we	know	from	Lesson	3.1	that	σrock	+	σpaper	+	σscissors	=
1.	Rather	than	continue	to	work	with	three	unknown	variables,	we	should	make



the	substitution	σscissors	=	1	–	σrock	–	σpaper	and	work	with	two	instead.	Thus,	as	we
continue	our	analysis,	player	2	plays	rock	with	probability	σrock,	paper	with
probability	σpaper,	and	scissors	with	probability	1	–	σrock	–	σpaper.

We	can	now	write	player	1’s	expected	utilities	for	each	of	his	three

strategies.	Let’s	begin	with	rock:	
Player	1	earns	0	with	probability	σrock,	-x	with	probability	σpaper,	and	y	with

probability	1	–	σrock	–	σpaper.	As	an	equation:	EUrock	=	(σrock)(0)	+	(σpaper)(-x)	+	(1	–
σrock	–	σpaper)(y)	Next,	consider	his	expected	utility	for	paper:	

This	time,	player	1	earns	x	with	probability	σrock,	0	with	probability	σpaper,
and	-z	with	probability	1	–	σrock	–	σpaper.	As	an	equation:	EUpaper	=	(σrock)(x)	+
(σpaper)(0)	+	(1	–	σrock	–	σpaper)(-z)	Finally,	suppose	player	1	selects	scissors:	

Now	he	earns	-y	with	probability	σrock,	z	with	probability	σpaper,	and	0	with
probability	1	–	σrock	–	σpaper.	As	an	equation:	EUscissors	=	(σrock)(-y)	+	(σpaper)(z)	+	(1
–	σrock	–	σpaper)(0)	We	are	searching	for	a	combination	of	σrock	and	σpaper	that
leaves	player	1	indifferent	among	all	three	of	his	strategies.	Thus,	we	set	these
expected	utilities	equal	to	one	another	and	solve	for	σrock	and	σpaper:	EUrock	=
EUpaper	=	EUscissors	EUrock	=	(σrock)(0)	+	(σpaper)(-x)	+	(1	–	σrock	–	σpaper)(y)	EUrock	=	-
xσpaper	+	y	–	yσrock	–yσpaper	EUpaper	=	(σrock)(x)	+	(σpaper)(0)	+	(1	–	σrock	–	σpaper)(-z)
EUpaper	=	xσrock	–	z	+	zσrock	+	zσpaper	EUscissors	=	(σrock)(-y)	+	(σpaper)(z)	+	(1	–	σrock	–
σpaper)(0)	EUscissors	=	-yσrock	+	zσpaper	Notice	that	the	simplified	expected	utility
function	for	scissors	only	has	two	terms.	Moreover,	its	only	term	for	σrock
matches	the	only	term	for	σrock	in	the	expected	utility	for	rock,	and	its	only	term
for	σpaper	matches	the	only	term	for	σpaper	in	the	expected	utility	for	paper.
Therefore,	we	can	link	the	expected	utility	of	scissors	to	the	expected	utility	of
rock	to	solve	for	σpaper,	and	we	can	link	the	expected	utility	of	scissors	to	the
expected	utility	of	paper	to	solve	for	σrock.	We	will	be	finished	afterward.

Although	that	may	have	sounded	complicated,	the	actual	math	is	fairly
simple.	Let’s	start	by	solving	for	σpaper:	EUrock	=	EUpaper	=	EUscissors	EUrock	=



EUscissors	EUscissors	=	-yσrock	+	zσpaper	EUrock	=	-xσpaper	+	y	–	yσrock	–yσpaper	-yσrock	+
zσpaper	=	-xσpaper	+	y	–	yσrock	–yσpaper	zσpaper	=	-xσpaper	+	y	–	yσpaper	xσpaper	+	yσpaper	+
zσpaper	=	y	σpaper(x	+	y	+	z)	=	y	σpaper	=	y/(x	+	y	+	z)	Let’s	check	the	validity	of	this
element	of	a	probability	distribution.	x,	y,	and	z	are	all	positive	values,	so	the
numerator	and	denominator	are	all	positive.	The	denominator	is	also	greater	than
the	numerator,	as	the	inequality	x	+	y	+	z	>	y	immediately	reduces	to	x	+	z	>	0.
Thus,	both	of	our	rules	hold,	so	σpaper	is	a	valid	probability.

Now	let’s	solve	for	σrock.	Recall	that	the	only	element	containing	σpaper	in	the
expected	utility	for	scissors	matches	the	only	element	containing	σpaper	in	the
expected	utility	for	paper.	Thus,	we	can	easily	eliminate	σpaper	from	the	equations
by	setting	the	expected	utilities	for	scissors	and	paper	equal	to	each	other:	EUrock

=	EUpaper	=	EUscissors	EUscissors	=	-yσrock	+	zσpaper	EUpaper	=	xσrock	–	z	+	zσrock	+	zσpaper
EUpaper	=	EUscissors	-yσrock	+	zσpaper	=	xσrock	–	z	+	zσrock	+	zσpaper	-yσrock	=	xσrock	–	z	+
zσrock	xσrock	+	yσrock	+	zσrock	=	z	σrock(x	+	y	+	z)	=	z	σrock	=	z/(x	+	y	+	z)	Again,	we
must	check	for	the	validity	of	this	element	of	a	probability	distribution.	As
before,	both	terms	are	clearly	positive.	The	denominator	must	be	greater	than	the
numerator	as	well,	since	x	+	y	+	z	>	z	reduces	to	x	+	y	>	0.	So	σrock	meets	the
validity	requirements.

However,	we	are	not	finished	checking	validity.	Every	event	in	the
probability	distribution	must	be	non-negative	and	they	must	all	sum	to	1.	While
our	mixtures	between	two	strategies	trivially	fulfilled	these	requirements,	we	can
manually	check	the	third	element	in	the	case	of	three	strategies.	Using	our
solutions	for	σrock	and	σpaper,	let’s	undo	our	substitution	for	σscissors:	σscissors	=	1	–
σrock	–	σpaper	σrock	=	z/(x	+	y	+	z)	σpaper	=	y/(x	+	y	+	z)	σscissors	=	1	–	z/(x	+	y	+	z)	–
y/(x	+	y	+	z)	σscissors	=	(x	+	y	+	z)/(x	+	y	+	z)	–	z/(x	+	y	+	z)	–	y/(x	+	y	+	z)	σscissors
=	x/(x	+	y	+	z)	For	the	same	reasons	σrock	and	σpaper	were	valid	elements	of	a
probability	distribution,	σscissors	is	as	well:	both	x	and	x	+	y	+	z	are	both	positive,
and	x	+	y	+	z	is	greater	than	x.	Thus,	all	of	the	possible	events	in	the	probability
distribution	occur	with	a	probability	between	0	and	1.

Moreover,	the	probabilities	of	the	events	sum	to	1.	We	achieved	this	through
the	construction	of	σscissors.	Recall	that	σscissors	equals	1	–	σrock	–	σpaper.	Simple
rearrangement	yields	σrock	+	σpaper	+	σscissors	=	1,	which	was	the	desired	property.

Combined,	these	two	facts	allow	us	to	finally	conclude	that	we	have	found	a
mixed	strategy	that	leaves	the	other	player	indifferent	among	all	three	pure
strategies.	Thus,	if	both	players	select	rock	with	probability	z/(x	+	y	+	z),	paper
with	probability	y/(x	+	y	+	z),	and	scissors	with	probability	x/(x	+	y	+	z),	the



game	is	in	a	mixed	strategy	Nash	equilibrium.
In	addition,	this	process	proves	the	uniqueness	of	the	equilibrium.	As	we

solved	for	the	MSNE,	our	indifference	conditions	produced	unique	values	for
σrock	and	σpaper.	If	multiple	mixtures	could	have	accomplished	this,	the	algorithm
would	have	also	generated	those	figures.	We	only	received	one	value	for	σrock
and	σpaper	though,	so	we	know	the	MSNE	is	the	only	MSNE	in	which	a	player
mixes	among	all	three	strategies.	Since	our	previous	work	showed	that	no
equilibria	consist	of	pure	strategies	or	mixtures	between	exactly	two	strategies,
we	know	the	aforementioned	MSNE	is	the	only	MSNE.

As	a	final	comment,	it	is	interesting	to	note	that	the	main	determinant	of
each	strategy’s	probability	has	nothing	to	do	with	that	strategy.	For	example,
recall	that	each	player	chooses	scissors	with	probability	x/(x	+	y	+	z).	The
denominator	is	the	same	as	the	other	probabilities;	it	is	the	sum	of	all	of	the
benefits	of	victory.	Intuitively,	you	might	guess	the	x	in	the	numerator	has
something	to	do	with	scissors,	as	the	x/(x	+	y	+	z)	is	each	player’s	probability	of
selecting	scissors	in	the	equilibrium.

Of	course,	game	theory	has	a	nasty	tendency	of	giving	us	unintuitive	results.
This	is	just	the	latest	example.	The	value	of	x,	in	fact,	has	no	direct	connection	to
scissors!	Take	a	second	look	at	the	game’s	matrix:	

As	the	matrix	shows,	x	is	the	benefit	a	paper	player	receives	for	beating
rock.	It	does	not	appear	in	any	of	the	payoffs	involving	a	scissors	player.

Nevertheless,	it	ends	up	being	the	biggest	determinant	of	the	equilibrium
probability	of	scissors.	Using	our	method	of	deriving	comparative	statics,	note
that	the	probability	of	playing	scissors	increases	as	a	function	of	x:	σscissors	=	x/(x
+	y	+	z)	σscissors’=	[x/(x	+	y	+	z)]’
σscissors’=	[(x)’(x	+	y	+	z)	–	(x)(x	+	y	+	z)’]/(x	+	y	+	z)2

σscissors’=	[(1)(x	+	y	+	z)	–	(x)(1)]/(x	+	y	+	z)2

σscissors’=	[(x	+	y	+	z)	–	(x)]/(x	+	y	+	z)2

σscissors’=	(y	+	z)/(x	+	y	+	z)2

	
Of	course,	y	+	z	is	positive;	x	+	y	+	z	is	also	positive,	and	squaring	it

maintains	this	property.	Thus,	the	derivative	is	always	positive,	which	means	the



probability	of	playing	scissors	is	increasing	in	x.
So	why	does	x	have	the	most	effect	on	σscissors	when	it	does	not	directly	affect

any	payoffs	when	a	player	chooses	scissors?	To	reach	a	sensible	answer,	we
must	take	a	step	back.	The	value	for	x	represents	paper’s	ability	to	smash	rock.
As	x	increases,	a	victorious	paper	player	takes	more	from	the	losing	rock	player.
Initially,	you	might	think	this	would	encourage	the	players	to	play	paper	more
frequently	and	rock	less	frequently.

In	practice,	rational	action	requires	the	players	to	think	one	step	further.	All
other	things	being	equal,	x	does	make	paper	more	attractive.	But	the	players	can
anticipate	this.	In	turn,	scissors	becomes	more	viable	as	a	way	to	counteract
paper’s	strength	against	rock.	In	effect,	the	players	balance	out	paper’s
advantage	by	increasing	their	frequency	of	scissors.

We	can	see	this	in	the	example	game	from	earlier:	

If	we	match	this	game	back	to	the	generalized	form,	we	have	x	=	2,	y	=	1,
and	z	=	1.	From	the	mixed	strategy	algorithm,	we	know	that	the	players	select
rock	with	probability	1/4,	paper	with	probability	1/4,	and	scissors	with
probability	1/2.
	



3.6.3:	Mixed	Strategies	as	Population	Parameters
From	an	empirical	standpoint,	mixed	strategies	seem	bizarre.	Even	with	the

advent	of	smartphones,	people	do	not	rely	on	randomizing	devices	to	make	their
strategic	decisions	even	if	a	Nash	equilibrium	tells	them	to.	Naturally,	game
theorists	spend	a	great	deal	of	time	addressing	the	discrepancy.	Are	people
actually	playing	these	games	rationally	if	they	are	never	randomizing?

Perhaps.	We	could	interpret	a	mixed	strategy	Nash	equilibrium	as	the
population	parameters	of	a	larger	game	rather	than	a	specific	strategy	of	an
individual	in	a	two-player	game.	The	video	game	interpretation	of	rock-paper-
scissors	provides	an	intuitive	framework	for	this	discussion.	After	all,	it	takes
time	to	learn	how	to	optimally	play	a	particular	character.	The	average	gamer
simply	does	not	have	the	time	to	learn	all	of	the	nuances	of	the	rock,	paper,	and
scissors	characters.	Instead,	he	learns	how	to	masterfully	play	a	single	character
and	effectively	selects	that	character	as	a	pure	strategy.

Without	loss	of	generality,	let’s	call	that	pure	strategy	“rock.”	Under	normal
circumstances,	playing	rock	as	a	pure	strategy	does	not	work	in	a	Nash
equilibrium.	But	the	player’s	choice	can	still	be	rationally	optimal.	When	the
gamer	logs	into	the	online	interface	for	his	game,	he	joins	thousands	of	players
on	the	server.	If	an	automated	matchmaking	system	randomly	picks	his
opponent,	what	his	expected	utility	for	the	game?

Look	back	to	the	relevant	portion	of	the	matrix:	

Let	σrock	be	the	portion	of	the	population	that	plays	rock,	σpaper	be	the	portion
of	the	population	that	plays	paper,	and	σscissors	be	the	portion	of	the	population
that	plays	scissors.	From	last	section’s	indifference	equations,	we	know	that	the
player’s	expected	utility	is	0	if	σrock	=	z/(x	+	y	+	z),	σpaper	=	y/(x	+	y	+	z)	and
σscissors	=	x/(x	+	y	+	z).	But	if	those	are	the	portions	of	other	players	using	each
strategy,	the	player	also	has	an	expected	utility	of	0	if	he	plays	paper	or	scissors.
Thus,	his	choice	to	play	rock	as	a	pure	strategy	is	rational;	he	cannot	choose	a
different	strategy	and	achieve	a	greater	expected	utility.

Amazingly,	we	have	an	environment	in	which	everyone	can	play	a	pure
strategy	yet	no	one	has	a	profitable	deviation.	The	trick,	of	course,	is	morphing
the	two	player	game	into	a	game	where	nature	randomly	draws	players	from	a
large	pool	of	individuals.	The	MSNE	of	the	two	player	game	informs	us	of	the
exact	distribution	necessary	to	maintain	individual	indifference	in	the	game	with
a	large	number	of	players.



	



Takeaway	Points
1)	In	symmetric,	zero	sum	games,	each	player’s	payoff	in	equilibrium	must
equal	0.
2)	Mixed	strategies	can	be	thought	of	as	population	parameters	instead	of
single	players	randomizing	over	choices.



Lesson	4.1:	Infinite	Strategy	Spaces,	Second	Price
Auctions,	and	the	Median	Voter	Theorem

Thus	far,	every	game	we	have	encountered	has	had	two	common	features:
(1)	they	had	a	finite	number	of	pure	strategies	and	(2)	we	could	represent	the
games	using	a	matrix	or	a	game	tree.	Unfortunately,	not	all	games	are	so	simple.
A	solid	introduction	to	game	theory	requires	at	least	some	discussion	of	games
that	fall	outside	of	these	categories,	so	we	address	these	issues	briefly	in	this
chapter.

Before	looking	at	specific	examples	and	solving	for	equilibria,	a	short	point
of	clarification	is	in	order.	We	do	not	define	games	based	on	their	matrices	or
trees.	Rather,	a	game	is	merely	a	set	of	players,	their	strategies,	an	order	of
moves,	and	payoffs	associated	with	those	moves.	We	use	only	these	illustrative
representations	because	they	make	it	easier	to	solve	for	equilibria.

However,	to	some	degree,	these	matrices	and	trees	are	a	crutch:	we	cannot
easily	create	a	matrix	or	a	tree	for	all	games.	For	example,	recall	the	duopolistic
game	from	Lesson	1.2,	in	which	two	firms	had	to	their	level	of	production:

We	limited	their	options	to	producing	0	to	5	goods.	Of	course,	that	was	a
simplification—5	is	the	largest	number	that	could	conveniently	fit	within	the
margins.	More	accurately,	a	firm	could	produce	an	arbitrarily	large	number	of
goods.	For	this	game,	the	simplification	was	harmless—producing	more	any
more	than	5	yields	a	negative	payoff	regardless	of	the	other	player’s	strategy.	As
such,	0	strictly	dominates	all	values	greater	than	0,	so	(by	iterated	elimination	of
strictly	dominated	strategies)	the	unique	equilibrium	of	the	simplified	game	is
also	the	only	equilibrium	of	the	expanded	game.

Even	so,	we	could	imagine	a	market	situation	that	would	support	40,	100,	or
12,000	goods	produced	without	firms	dipping	into	negative	profits.	At	this	point,



we	could	not	possibly	draw	out	a	payoff	matrix	in	any	reasonable	amount	of
time.	(We	might	run	out	of	paper	too!)	Consequently,	one	goal	of	this	chapter	is
to	learn	how	to	solve	for	equilibria	even	if	payoff	matrices	are	out	of	the
question.
	



4.1.1:	A	Simple	Game
To	start,	consider	the	following	game.	Players	1	and	2	simultaneously	select

a	whole	number	between	1	and	100.	Each	player’s	payoff	is	the	product	of	those
two	numbers.	What	are	the	game’s	equilibria?

Before,	our	method	would	have	required	drawing	out	the	game	tree,	starring
best	responses,	and	finding	the	mutual	best	responses.	But	notice	that	this
process	would	take	forever:	each	player	has	100	strategies,	so	the	game	matrix
contains	10,000	outcome	boxes.	Even	if	we	finished	writing	the	matrix,	we
would	then	have	to	mark	best	responses	for	200	strategies.	At	least	for	this	game,
the	game	matrix	has	outlived	its	usefulness.

Fortunately,	we	can	use	the	following	algorithm	to	efficiently	find	this
game’s	pure	strategy	Nash	equilibria:

	
1)	Consider	a	single	pure	strategy	from	one	player.
2)	Find	the	other	player’s	best	responses	to	that	strategy.
3)	Check	whether	the	original	strategy	is	a	best	response	to	any	of	those	best
responses.	If	so,	those	strategies	are	an	equilibrium.
4)	Repeat	this	process	for	all	of	the	pure	strategies	from	the	original	player.
	
Let’s	use	player	2’s	strategies	for	the	example.	To	start,	suppose	player	2

selected	1.	Then	player	1’s	payoff	equals	x,	so	he	maximizes	his	payoff	by
selecting	100.	But	player	2’s	best	response	to	100	is	not	1	but	rather	100	as	well.
So	the	game	has	no	PSNE	in	which	player	2	selects	1.

What	about	player	2	picking	2?	Then	player	1’s	payoff	equals	2x,	so	he
maximizes	his	payoff	by	selecting	100	once	again.	But	player	2’s	best	response
to	100	is	still	picking	100.	So	the	game	has	no	PSNE	in	which	player	2	selects	2.

We	could	repeat	this	process	for	3	to	99.	Each	time,	player	1’s	best	response
is	to	choose	100.	And	each	time,	player	2’s	best	response	is	to	also	select	100.
As	such,	the	game	has	no	equilibria	in	which	player	2	selects	any	value	less	than
100.

Now	consider	player	1’s	best	response	to	100.	Like	player	2,	his	payoff
equals	100x.	Since	this	payoff	is	also	strictly	increasing	in	the	number	he	selects,
he	should	select	the	largest	number	possible,	or	100.	This	is	a	Nash	equilibrium.
	



4.1.2:	A	Game	with	No	Equilibria
Recall	that	Nash’s	theorem	says	that	all	finite	games	have	at	least	one	Nash

equilibrium.	So	far,	because	we	have	dealt	exclusively	with	finite	games,	every
game	we	have	seen	has	had	at	least	one	equilibrium.	But	now	we	will	cross	the
border	into	the	realm	of	infinite	games,	which	may	or	may	not	have	an
equilibrium.

Consider	a	revised	version	of	the	game	from	the	previous	section.	As	before,
both	players	select	a	number,	and	their	payoffs	are	the	product	of	those	numbers.
This	time,	however,	they	may	select	any	number	strictly	greater	than	0.

It	takes	little	time	to	show	that	the	game	has	no	equilibria.	Could	a	player
play	any	value	for	x	in	equilibrium?	No.	Holding	the	other	player’s	strategy	as	y,
the	original	player	could	profitably	deviate	to	x	+	1	and	receive	strictly	more.	As
such,	x	cannot	be	played	in	equilibrium.	But	x	applies	to	all	possible	choices,	so
no	equilibria	exist.

Essentially,	the	problem	here	is	that	each	player	would	like	to	keep	inflating
their	strategy	closer	to	infinity,	since	something	slightly	more	than	an	arbitrarily
large	number	is	a	greater	payoff	than	an	arbitrarily	large	payoff.	This	causes	the
notion	of	best	responses	to	completely	break	down,	ensuring	no	best	responses
exist.	Without	best	responses,	there	cannot	be	mutual	best	responses,	and	in	turn
there	cannot	be	Nash	equilibria.
	



4.1.3:	Hotelling’s	Game	and	the	Median	Voter	Theorem
Although	John	Nash	published	his	famous	theorem	in	1951,	economists	and

mathematicians	toyed	around	with	similar	concepts	decades	prior.	One	of	the
most	famous	early	examples	is	Hotelling’s	game,	named	after	Harold	Hotelling,
who	published	this	model	way	back	in	1929.

Hotelling’s	setup	is	as	follows.	Two	vendors	are	selling	identical	ice	cream
on	a	beach	for	$2	per	cone.	The	vendors	own	carts	and	must	therefore	choose
where	to	set	up	shop.	Since	their	products	and	prices	are	identical,	the	location	is
all	that	matters—beachgoers	will	purchase	from	whichever	vendor	is	closest	to
them,	and	they	will	split	the	business	evenly	if	the	vendors	are	in	the	same
location.

Suppose	we	label	the	westernmost	point	of	the	beach	0	and	the	easternmost
point	1.	Further,	imagine	that	all	of	the	beachgoers	are	evenly	distributed	along
the	interval.	Where	should	the	vendors	place	their	carts?

Again,	we	encounter	the	problem	of	infinite	strategy	spaces.	As	a	result,
game	matrices	provide	no	relief	here	and	we	must	instead	use	logical	reasoning
to	find	the	game’s	equilibria.

Pinning	down	what	must	be	true	about	equilibrium	strategies	sometimes
drastically	cuts	the	number	of	possible	equilibrium	strategy	combinations.	To
begin,	note	that	there	is	something	special	about	the	location	1/2.	Imagine	that
the	first	owner	set	up	shop	at	that	location.	No	matter	where	the	other	vendor
places	his	cart,	the	first	vendor	must	receive	half	of	the	business.	For	example,
suppose	the	other	vendor	set	up	anywhere	to	the	left	of	1/2:

Vendor	1	receives	all	of	the	business	from	beachgoers	on	the	right	and	a
portion	of	the	patrons	on	the	left.	Exactly	how	much	of	the	business	on	the	left
he	receives	depends	on	precisely	where	vendor	2	locates	herself.	However,	such
specifics	are	irrelevant.	All	that	matters	here	is	that	under	such	conditions,
vendor	1	receives	more	than	half	the	business.

Note	that	the	same	logic	holds	if	vendor	2	places	herself	to	the	right	of
vendor	1.	Now	vendor	1	receives	all	of	the	left	side	business	and	a	portion	of	the
right	side	business,	for	a	total	of	more	than	half.

Lastly,	if	vendor	2	also	locates	at	1/2,	then	the	customers	split	evenly.	As
such,	by	placing	himself	at	1/2,	vendor	1	guarantees	himself	half	of	the	business.

Why	does	this	tidbit	matter?	Recall	that	a	Nash	equilibrium	is	a	set	of	mutual
best	responses.	Thus,	a	set	of	strategies	is	not	a	Nash	equilibrium	if	a	player



could	profitably	deviate	to	a	different	strategy.
In	turn,	consider	any	outcome	in	which	vendor	1	does	not	receive	at	least

half	of	the	business.	Then	he	could	profitably	deviate	to	positioning	himself	at
1/2,	guaranteeing	himself	at	least	half	of	the	revenue.	As	a	result,	in	any	Nash
equilibrium,	vendor	1	must	receive	at	least	half	of	the	business.

Of	course,	the	same	logic	applies	to	vendor	2—positioning	herself	at	1/2	also
guarantees	that	at	least	half	of	the	revenue	will	go	to	her.	As	such,	she	must	also
receive	at	least	half	of	the	business	in	any	Nash	equilibrium.

Keep	in	mind	number	of	customers	on	the	beach	is	not	limitless—the	sum	of
the	vendors’	business	cannot	exceed	1,	since	1	is	the	total	amount	of	space	on
the	beach.	So	vendor	1	must	receive	at	least	half	of	the	business,	vendor	2	must
receive	half	of	the	business,	and	the	sum	of	the	business	must	equal	1.	This	gives
us	three	constraints:

	
EU1	≥	1/2
EU2	≥	1/2
EU1	+	EU2	=	1

	
The	only	way	to	simultaneously	satisfy	all	of	these	constraints	is	if	both

vendor	1	and	vendor	2	receive	exactly	half	of	the	business.
Take	a	step	back	for	a	moment.	Originally,	the	game	had	a	daunting	number

of	possible	strategies	and	a	daunting	number	of	possible	payoffs	for	the	vendors.
Consequently,	finding	the	Nash	equilibria	of	the	game	seemed	like	an	extremely
difficult	task.	Yet	the	above	constraints	mean	that	we	only	have	to	consider	cases
where	each	vendor	receives	half	of	the	customers.	This	is	very	manageable
because	this	can	only	happen	two	ways:	both	choose	a	position	equidistant	from
the	halfway	point	or	pick	the	same	location.

Let’s	start	with	both	equidistant	from	the	halfway	point.	Since	the	game	is
symmetrical,	let’s	say	vendor	1	goes	to	the	left	and	vendor	2	goes	to	the	right.
Those	strategies	look	like	this:

Although	vendor	1	looks	like	he	is	at	1/4	and	vendor	2	looks	like	she	is	at
3/4,	the	exact	locations	remain	intentionally	ambiguous.	Indeed,	we	want	to
consider	all	such	cases	simultaneously.	As	such,	the	vendors	could	be	at	0	and	1,
1/10	and	9/10,	1/3	and	2/3,	or	whatever.

In	all	of	these	cases,	everyone	to	the	left	of	1/2	goes	to	vendor	1	and



everyone	to	the	right	of	1/2	goes	to	vendor	2.	For	these	strategies	to	form	a	Nash
equilibrium,	no	vendor	can	have	a	profitable	deviation.

But	consider	vendor	1’s	payoff	if	he	moved	his	location	to	1/2.	He	still
receives	all	of	the	business	on	the	left	side,	but	now	he	steals	some	business
away	from	the	right	side.	This	gives	him	more	than	half	of	the	business,	which	is
a	profitable	deviation.	As	such,	the	vendors	cannot	be	equidistant	from	1/2	in
equilibrium.

This	leaves	both	vendors	selecting	the	same	location	as	the	only	possibility.
First,	imagine	they	selected	any	point	that	is	not	1/2.	For	example,	imagine	they
were	both	to	the	left:

Again,	they	evenly	split	the	business.	However,	vendor	1	could	move
himself	to	1/2	instead.	This	secures	all	of	the	business	on	the	right	half	as	well	as
a	portion	of	the	business	on	the	left.	As	such,	these	strategies	are	not	an
equilibrium.

The	same	is	true	if	both	vendors	selected	the	same	position	to	the	right	of
1/2.	Now	vendor	1	could	move	to	1/2	to	obtain	all	of	the	business	to	the	left	and
a	portion	of	the	business	to	the	right.

This	leaves	just	a	single	possibility:	if	both	position	themselves	exactly	at
1/2.	Here,	any	deviation	leaves	a	vendor	with	less	than	half	of	the	business.
Consequently,		no	profitable	deviations	exist.	In	turn,	Hotelling’s	game	has	a
unique	equilibrium:	the	vendors	occupy	the	same	spot	halfway	along	the	beach.

This	might	be	surprising,	but	we	commonly	see	applications	of	Hotelling’s
game	in	everyday	life.	Consider,	for	example,	gas	station	locations.	It	might
seem	strange	that	multiple	gas	stations	frequently	appear	on	the	same
intersection.	Why	don’t	they	spread	themselves	out	to	make	it	easier	for	their
customers?	Hotelling’s	game	provides	the	answer:	despite	being	easier	for
customers,	moving	away	from	the	center	gives	the	gas	station	less	business	than
it	would	by	staying	put.	As	such,	gas	station	owners	flock	to	the	same	location.

Similarly,	consider	Presidential	elections	in	the	United	States.	Immediately
after	the	primary	season	ends,	both	the	Democratic	and	Republican	candidates
dart	toward	the	middle	of	the	political	spectrum.	Political	scientists	note	that	this
is	also	an	application	of	Hotelling’s	game,	known	as	the	median	voter	theorem.

To	win	an	election,	candidates	need	half	of	the	vote.	The	“median	voter”
represents	the	person	whose	political	ideology	places	him	with	exactly	half	of
the	remaining	voters	to	his	left	and	exactly	half	of	the	remaining	voters	on	his



right.	If	a	politician	convinces	the	median	voter	to	vote	for	him,	then	he
guarantees	himself	half	of	the	vote.	If	the	rival	takes	a	more	liberal	or
conservative	approach,	he	will	certainly	lose.	As	such,	the	other	candidate	must
also	mimic	the	median	voter’s	preference	to	at	least	force	a	tie.	Consequently,
candidates	race	toward	the	center	in	the	hopes	of	becoming	unbeatable.

	



4.1.4:	A	Duel
Consider	a	duel	between	two	gunslingers	in	the	Wild	West.	Both	have	a	gun

with	a	single	bullet	and	stand	100	yards	apart.	They	slowly	move	toward	each
other	until	one	fires	a	shot.	The	shooter	survives	if	he	hits.	Missing	is	lethal,
however,	as	the	other	gunslinger	can	walk	up	and	fire	at	point	blank.

Naturally,	we	might	wonder	when	the	gunslingers	will	fire	their	shots.	We
might	assume	that	more	accurate	shooters	are	willing	to	fire	earlier	while	less
accurate	shooters	will	wait	until	close	range.	As	it	turns	out,	this	theory	is	wrong
—both	gunslingers	fire	at	the	same	time!

To	see	why,	we	need	to	formalize	the	problem.	Players	earn	1	if	they	survive
and	0	if	they	die.	Let	a1(d1)	be	the	function	that	takes	a	distance	for	player	1	and
gives	the	accuracy	of	his	shot	from	that	distance.	Likewise,	a2(d2)	takes	player
2’s	distance	and	gives	her	accuracy.

We	only	need	to	make	two	rather	innocuous	assumptions	about	those
functions.	First,	suppose	they	are	strictly	decreasing;	that	is,	the	further	the
gunslinger	is	from	the	other	one,	the	less	accurate	his	shot	will	be.	(Equivalently,
the	closer	he	is,	the	more	accurate	he	is.)	Second,	let	a1(0)	=	a2(0)	=	1	and
a1(100)	=	a2(100)	=	0.	That	is,	neither	will	hit	from	100	yards	but	both	are
guaranteed	to	kill	the	other	from	point	blank	range.

Note	that	we	are	putting	no	other	restrictions	on	these	functions.	The	players
could	have	identical	skill-sets,	one	player	could	consistently	be	more	accurate,
player	1	could	be	better	from	short	range	but	worse	from	long	range,	or	player	2
could	be	better	from	short	range	but	worse	from	long	range.	Surprisingly,	we	can
solve	for	all	of	those	cases	in	one	motion.

We	are	ready	to	find	the	game’s	pure	strategy	Nash	equilibria.	Let	<d1*,
d2*>	represent	those	strategies,	which	are	the	distances	the	players	shoot	from	if
the	other	player	has	not	already	shot.	It	is	easy	to	show	that	d1*	must	equal	d2*.
To	see	why,	suppose	not.	Then	either	d1*	>	d2*	or	d1*	<	d2*	is	true.	Without	loss
of	generality,	imagine	it	is	d1*	>	d2*.	Then	player	1	shoots	first,	since	his
equilibrium	strategy	calls	for	him	to	fire	at	a	distance	further	away	than	player
2’s	equilibrium	strategy.	Player	1	earns	a1(d1*)	in	this	alleged	equilibrium.

However,	consider	a	deviation	to	any	distance	between	d1*	and	d2*.	For	the
purposes	of	this	illustration,	consider	in	particular	the	midpoint	between	these
two	distances.	Call	that	midpoint	m.	Suppose	player	1	deviated	to	waiting	to	fire
at	m	instead.	Because	m	>	d2*,	player	1	still	fires	first.	He	receives	a1(m)	as	his
payoff.	Since	a1(d1)	is	strictly	decreasing	and	m	<	d1*,	it	must	be	true	that	a1(m)
>	a1(d1*),	meaning	that	this	is	a	profitable	deviation.	In	turn,	<d1*,	d2*>	cannot



be	an	equilibrium.
If	the	math	was	not	clear,	this	has	an	intuitive	interpretation.	Suppose	you

know	that	player	2	will	wait	until	a	particular	distance	to	shoot.	If	you	wanted	to
shoot	first,	would	you	ever	want	to	shoot	a	yard	before	player	2’s	shooting
distance?	No,	you	would	be	better	off	waiting	until	a	half	yard	before	so	you	will
be	more	accurate	with	your	shot.	But	would	you	ever	want	to	shoot	from	the	half
yard	mark?	No—again,	you	would	be	better	off	waiting	a	little	bit	longer.	But
this	process	repeats	infinitely—as	long	as	there	is	some	distance	before	player	2
will	shoot,	even	if	that	distance	is	arbitrarily	small,	you	will	still	want	to	get
slightly	closer	to	improve	your	shot.	So	you	can	never	optimally	shoot	your	gun
before	your	opponent	does.

Consequently,	any	pure	strategy	Nash	equilibrium	requires	d1*	=	d2*.	Let’s
call	that	distance	d*.	What	is	the	exact	value	for	d*?	Well,	for	player	1	to	not
want	to	deviate,	he	must	be	at	least	as	well	off	from	shooting	at	that	moment	as
not	shooting	and	hoping	his	opponent	will	miss,	allowing	him	to	walk	up	to	her
and	fire	at	point	blank.	Note	that	the	probability	player	1	survives	if	player	2
shoots	at	d*	equals	1	–	a2(d*).	As	such,	for	player	1	to	be	willing	to	shoot	at	d*,
it	must	be	that:

	
a1(d*)	≥	1	–	a2(d*)
a1(d*)	+	a2(d*)	≥	1

	
Player	1’s	other	deviation	is	to	fire	before	d*.	As	just	mentioned,	by	waiting

for	player	2	to	fire	at	d*,	player	1	survives	with	probability	1	–	a2(d*).	For	player
1	to	not	want	to	shoot	earlier,	it	cannot	be	the	case	that	his	accuracy	at	d*	is
greater	than	his	probability	of	survival	at	d*.	After	all,	if	it	were	greater,	player	1
could	shoot	a	split	second	earlier.	His	chance	of	hitting	player	2	are	greater	than
her	chance	of	hitting	him	at	d*,	so	player	1	is	more	likely	to	survive	by	deviating
to	the	earlier	time.

Formalizing	this	notion,	it	cannot	be	true	that	a1(d*)	>	1	–	a2(d*).	But	this	is
the	same	thing	as	saying	a1(d*)	≤	1	–	a2(d*)		must	be	true.	We	can	rework	that
inequality	as	follows:

	
a1(d*)	≤	1	–	a2(d*)
a1(d*)	+	a2(d*)	≤	1

	
So	the	last	two	calculations	tell	us	that	a1(d*)	+	a2(d*)	≥	1	and	a1(d*)	+	a2(d*)



≤	1	must	simultaneously	be	true.	The	only	way	that	can	be	the	case	is	if	a1(d*)	+
a2(d*)	=	1.

The	story	is	the	same	for	player	2.	For	her	to	be	willing	to	shoot	at	d*,	she
must	be	at	least	as	well	off	from	shooting	at	that	moment	as	not	shooting	and
hoping	her	opponent	will	miss,	allowing	her	to	walk	up	to	him	and	fire	at	point
blank.	Note	that	the	probability	player	2	survives	if	player	1	shoots	first	at	d*
equals	1	–	a2(d*).	Thus,	for	player	2	to	be	willing	to	shoot	at	d*,	it	must	be	that:
	
a2(d*)	≥	1	–	a1(d*)
a1(d*)	+	a2(d*)	≥	1

	
Meanwhile,	player	2	must	also	not	want	to	fire	before	d*.	For	this	to	be	true,

it	cannot	be	the	case	that	her	accuracy	at	d*	is	greater	than	her	probability	of
survival	at	d*;	otherwise,	she	would	want	to	shoot	slightly	earlier	and	preempt
player	1’s	shot.	Formally,	this	means	that	a2(d*)	>	1	–	a1(d*)	cannot	be	true.	But
this	is	the	same	thing	as	saying	a2(d*)	≤	1	–	a1(d*).	We	can	manipulate	this
second	inequality	as	follows:

	
a2(d*)	≤	1	–	a1(d*)
a1(d*)	+	a2(d*)	≤	1

	
Notice	that	these	are	the	same	two	inequalities	we	derived	when	checking

for	player	1’s	profitable	deviations.	The	only	way	they	can	simultaneously	hold
is	if	a1(d*)	+	a2(d*)	=	1.	Thus,	we	have	our	answer.	Both	players	fire	at	the	same
time,	where	that	optimal	time	is	the	moment	that	the	players’	probabilities	of
killing	the	other	sum	to	1.

While	Wild	West	duels	may	be	a	thing	of	the	past,	this	game	has	a	very
relevant	application	to	modern	businesses.	Many	technologies	meant	to	directly
compete	with	each	other	(like	PlayStation	4	and	Xbox	One	or	Blu-Ray	and	HD
DVD)	come	out	at	roughly	the	same	time.	This	is	not	a	coincidence.	Rather	than
probabilities	of	death	and	survival,	imagine	the	duel	recast	as	the	probability	a
firm’s	technology	captures	the	marketplace.	Firms	face	a	key	tradeoff.	The
earlier	you	release	your	product,	the	more	likely	it	is	to	have	bugs.	Yet	releasing
it	later	gives	your	rivals	to	the	opportunity	to	establish	market	share.

But	these	are	the	exact	same	incentives	the	gunslingers	faced.	Therefore,	we
know	the	result:	both	firms	release	their	products	at	the	same	time.
Unfortunately	for	consumers,	however,	the	incentives	to	preempt	the	other	side’s



release	date	mean	that	both	products	have	the	potential	to	be	bugged.
	



4.1.5:	Cournot	Duopolistic	Competition
We	now	turn	to	a	version	of	duopolistic	competition	from	Antoine	Augustin

Cournot,	a	French	economist	who	investigated	how	markets	work	when	firms
compete	over	quantities	of	goods	produced.	Unlike	the	model	of	duopolistic
competition	in	Lesson	1.2,	firms	can	choose	any	number	of	units	to	produce,
including	fractions	of	a	whole	number.	As	a	result,	we	cannot	use	a	payoff
matrix	to	find	equilibria.

Here	is	the	game.	Two	firms	simultaneously	select	a	quantity	of	production.
Call	these	values	q1	and	q2,	with	the	subscript	denoting	the	given	firm’s
selection.	Afterward,	the	market	determines	the	price	the	firms	can	sell	the	good
at.	Let	that	price	function	be	900	–	(q1	+	q2).	Notice	that	following	the	laws	of
supply	and	demand,	the	price	decreases	as	the	quantity	increases.	Firm	1’s	cost
of	production	is	12	per	unit	and	Firm	2’s	is	24.	If	each	firm	wants	to	maximize
its	profit,	how	much	should	each	produce?

Unlike	the	duopolistic	competition	game	from	Lesson	1.2,	this	game	has	an
infinite	number	of	strategies,	preventing	us	from	using	a	payoff	matrix	to	find
the	equilibria.	But	unlike	Hotelling’s	game,	each	firm	has	a	well-defined	best
response	function.	This	allows	us	to	use	calculus	to	find	the	game’s	equilibrium.
(Unfortunately,	this	also	means	you	will	not	be	able	to	do	this	problem	if	you	do
not	know	calculus.)

In	fact,	this	type	of	game	is	common.	A	three-step	algorithm	produces	the
equilibrium:

	
1)	Solve	for	each	firm’s	utility	function.
2)	Convert	each	utility	function	to	a	best	response	function.
3)	Use	the	best	response	functions	as	a	system	of	equations	and	solve	for	the
mutual	best	responses.
	
Steps	1	and	3	are	straightforward	for	anyone	who	knows	algebra.	However,

step	2	can	be	tricky	because	it	requires	multivariate	calculus	to	solve	the
optimization	problem.

First,	we	build	each	firm’s	utility	function.	Since	the	firms	only	wish	to
maximize	profit,	the	formula	is	gross	sales	minus	the	firm’s	costs.	For	example,
consider	Firm	1’s	profits.	The	market	price	of	the	good	is	900	–	(q1	+	q2),	and	it
sells	q1	number	of	these	goods.	However	it	pays	12	to	create	each	good.	As	such,
its	overall	profit	equals:
	
EU1(q1,	q2)	=	[sale	price][Firm	1’s	quantity]	–	[Firm	1’s	cost][	Firm	1’s	quantity]



EU1(q1,	q2)	=	[900	–	(q1	+	q2)](q1)	–	12q1
EU1(q1,	q2)	=	(900	–	q1	–	q2)(q1)	–	12q1
EU1(q1,	q2)	=	900q1	–	q12	–	q1q2	–	12q1
EU1(q1,	q2)	=	888q1	–	q12	–	q1q2

	
Similarly,	Firm	2	sells	q2	of	the	good	at	price	900	–	(q1	+	q2)	but	subtracts	24

for	each	good	it	produces.	Therefore,	Firm	2’s	utility	function	equals:
	
EU2(q1,	q2)	=	[sale	price][Firm	2’s	quantity]	–	[Firm	2’s	cost][	Firm	2’s	quantity]
EU2(q1,	q2)	=	[900	–	(q1	+	q2)](q2)	–	24q2
EU2(q1,	q2)	=	(900	–	q1	–q2)(q2)	–	24q2
EU2(q1,	q2)	=	900q2	–	q1q2	–q22	–	24q2
EU2(q1,	q2)	=	876q2	–	q1q2	–q22

	
This	completes	step	1.
Step	2	says	to	convert	each	utility	function	to	a	best	response	function.	To

understand	why,	notice	that	both	firms’	profits	are	a	function	of	both	their	own
production	and	their	competition’s.	Consequently,	formulating	a	good	business
plan	means	anticipating	the	other	side’s	level	of	production	and	adopting	the
appropriate	best	response.

In	the	past,	finding	a	best	response	simply	meant	looking	along	the
corresponding	row	or	column	and	finding	the	counter	strategy	that	reaps	the
greatest	rewards.	Here,	we	only	have	an	equation.	But	derivative	calculus
provides	a	solution:	we	can	simply	optimize	the	equation.

More	mathematically,	recall	that	Firm	1’s	profit	function	is	U1(q1,	q2)	=
888q1	–	q12	–	q1q2.	Firm	1	can	only	control	q1;	Firm	2	controls	q2.	As	such,	Firm
1	must	optimize	q1	to	generate	the	greatest	revenue	given	some	value	for	q2.	But
just	requires	taking	the	partial	derivative	with	respect	to	q1	and	then	optimizing
the	payoff	function	for	q1.

Here	is	the	calculation	for	the	partial	derivative:
	
(888q1	–	q12	–	q1q2)’
888	–	2q1	–	q2
	

To	optimize,	we	set	the	partial	derivative	equal	to	0	and	solve	for	q1:
	



888	–	2q1	–	q2	=	0
2q1	=	888	–	q2
q1	=	444	–	q2/2
	

This	is	Firm	1’s	best	response	function.	Put	differently,	it	gives	Firm	1’s
most	profitable	production	quantity	for	any	given	production	quantity	of	Firm
2’s.	For	instance,	suppose	Firm	2	produced	88	goods.	Then	Firm	1	receives	the
most	profit	by	producing	444	–	88/2	units,	or	400	units.

Step	2	of	the	algorithm	also	requires	finding	Firm	2’s	best	response	function,
giving	us	an	opportunity	to	practice	the	previous	step	a	second	time.	Recall	that
Firm	2’s	profit	function	is	U2(q1,	q2)	=	876q2	–	q1q2	–q22.	Since	Firm	2	only
controls	its	own	quantity	produced,	we	begin	by	taking	the	partial	derivative
with	respect	to	q2:
	
(876q2	–	q1q2	–q22)’
876	–	q1	–	2q2
	

Then	we	optimize	by	setting	the	partial	derivative	equal	to	0	and	solving	for
q2:
	
876	–	q1	–	2q2	=	0
2q2	=	876	–	q1
q2	=	438	–	q1/2
	

This	completes	step	2.
The	final	step	of	the	algorithm	is	to	use	the	best	response	function	as	a

system	of	equations	and	solve	for	equilibria.	Note	that	the	best	response
functions	are	two	equations	with	two	unknown	variables.	From	basic	algebra,
this	implies	that	the	system	of	equations	has	a	unique	solution.

Why	does	this	matter?	Recall	again	that	a	Nash	equilibrium	is	a	set	of
mutual	best	responses.	So	imagine	that	q1*	and	q2*	represented	the	equilibrium
strategies.	By	definition,	q2*	must	be	a	best	response	to	q1*.	In	turn,	substituting
q1*	into	Firm	2’s	best	response	function	must	yield	q2*.	Likewise,	q1*	must	be	a
best	response	to	q2*,	so	substituting	q2*	into	Firm	1’s	best	response	function
must	yield	q1*.	In	other	words,	q1*	and	q2*	must	be	the	solution	to	the	system	of
best	response	equations.	Thus,	we	can	find	the	game’s	unique	equilibrium	by
finding	the	solution	to	the	system	of	equations.



First,	let’s	solve	for	q1	using	Firm	2’s	best	response	function:
	

q2	=	438	–	q1/2
2q2	=	876	–	q1
q1	=	876	–	2q2

	
Combining	this	with	Firm	1’s	best	response	function,	we	can	solve	for	q2:
	

q1	=	444	–	q2/2
q1	=	876	–	2q2
444	–	q2/2	=	876	–	2q2
3q2/2	=	432
q2	=	288

	
So	Firm	2	produces	288	in	equilibrium.
We	can	then	use	q2	=	288	to	solve	for	q1:
	

q2	=	288
q1	=	876	–	2q2
q1	=	876	–	2(288)
q1	=	876	–	576
q1	=	300
	

Thus,	Firm	1	produces	300	in	equilibrium,	12	more	units	than	its	competitor.
Consequently,	Firm	1’s	cheaper	production	costs	grant	it	a	larger	market	share
than	its	competitor.

	



4.1.5:	Second	Price	Auctions
We	conclude	with	a	brief	look	at	auction	theory.	In	a	second	price	auction,

individuals	give	sealed	bids	to	the	auctioneer.	After,	the	auctioneer	looks	over	all
the	bids	and	awards	the	good	to	the	person	with	the	highest	bid.	However,	the
winner	pays	an	amount	equal	to	the	second	highest	bid.

For	example,	imagine	Sotheby’s	auctioned	off	a	copy	of	Game	Theory	101:
The	Complete	Textbook.	Albert	bid	$10;	Barbara	bid	$13;	Charlie	bid	$0.13,	and
Danielle	bid	$30.	Under	a	second	price	auction,	Sotheby’s	would	award	Danielle
the	book,	since	her	bid	was	the	highest.	But	rather	than	paying	$30	(as	she	would
in	a	first	price	auction)	she	pays	$13,	the	amount	the	second	highest	bidder
submitted.

Second	price	auctions	have	a	large	number	of	Nash	equilibria.	However,	we
focus	on	one	in	particular:	when	everyone	submits	the	maximum	price	they	are
willing	to	pay	for	the	good.

Verifying	that	this	is	an	equilibrium	takes	only	a	couple	steps.	First,	consider
the	losers’	strategies.	Reducing	their	bids	does	not	change	their	welfare—they
still	lose	and	do	not	pay	anything.	Increasing	their	bids	may	or	may	not	change
their	welfare.	If	a	loser	increases	his	bid	to	a	still	losing	price,	he	still	loses	and
receives	nothing.	On	the	other	hand,	a	loser	increasing	his	bid	to	a	winning	price
gives	him	the	good—but	at	a	price	higher	than	the	maximum	he	was	willing	to
pay.	As	such,	losers	have	no	incentive	to	change	their	bids.

Now	consider	the	winner’s	strategy.	Increasing	his	bid	does	not	change
anything,	as	he	will	still	win	and	continue	paying	the	price	of	the	second	bid.
Meanwhile,	decreasing	his	bid	can	only	hurt	him.	If	he	stays	above	the	second
highest	bid,	he	still	wins	and	still	pays	the	second	highest	bidder’s	price.	But	if
he	drops	below	the	second	highest	bid,	he	now	loses	the	auction	he	otherwise
would	have	won	at	an	acceptable	price.	Consequently,	the	winner	cannot
profitably	deviate	either.

This	equilibrium	is	remarkable	for	a	number	of	reasons.	First,	it	is	strategy-
proof.	Just	about	every	game	we	have	covered	in	this	textbook	requires	active
thought	from	the	players—they	must	think	about	what	others	are	doing,
strategize	in	response,	and	then	worry	about	how	competitors	will	strategize	in
response	to	strategizing	in	response.	Players	in	a	second	price	auction	can	be
comparatively	oblivious.	Because	submitting	their	maximum	prices	is	weakly
dominant,	bidders	will	never	regret	having	told	the	truth.

Second,	submitting	one’s	maximum	weakly	dominates	all	other	strategies.
This	follows	directly	from	the	fact	that	a	winner	cannot	control	the	price	he	pays
(since	the	second	highest	bidder	determines	the	payment)	and	that	a	loser
receives	nothing	and	cannot	win	the	good	without	spending	more	than	his	value



for	it.
Third,	it	is	honest.	The	bidders	simply	tell	the	auctioneer	their	true	value	for

good.
Fourth,	number	of	bidders	does	not	matter.	Whether	there	are	two	or	two

million,	submitting	the	maximum	price	remains	optimal.
	
Lastly,	bidders	need	not	know	others’	maximum	prices.	This	is	an	important

final	note	for	this	textbook.	Throughout,	we	have	assumed	players	have
complete	information—that	is,	they	know	each	others’	payoffs,	they	know	they
know	each	other’s	payoffs,	and	so	forth.	While	complete	information	can	go	a
long	way,	many	interesting	interactions	involve	one	or	both	sides	being	in	the
dark.	In	an	auction	setting,	for	instance,	I	might	not	know	how	much	you	are
willing	to	spend,	and	you	might	not	know	how	much	I	am	willing	to	spend.
Sometimes	incomplete	information	can	drastically	change	the	outcome	of	an
interaction.	However,	for	a	second	price	auction,	it	does	not—everyone	can	still
safely	submit	their	maximum	price.

	



Takeaway	Points
1)	Matrices	and	game	tree	do	not	define	games;	players,	strategies,	timing,
and	payoffs	do.
2)	Infinite	games	cannot	be	easily	drawn	and	therefore	require	other
algorithms	to	solve.
3)	Some	infinite	games	have	no	equilibria.



Final	Thought
This	book	explained	all	of	the	tools	you	will	need	to	solve	introductory	level

questions	about	strategic	and	extensive	form	games.	Good	luck	in	applying
them.

And	always	remember:	weak	dominance	will	be	the	bane	of	your	existence.
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